CHAPTER IX 276
PROGRESSIVE CNOIDAL WAVES ON ARBITRARY DEPTH

ABSTRACTS

In this chapter there is developed a finite amplitude cnoidal
wave which can be used on any water depth.

This cnoidal wave will have the deep water cnoidal wave as
one 1limit, and the shallow water cnoidal wave and solitary wave as
another limit, and the sinusoidal wave as the limit for small wave
heights.

Previously it was a problem that harbours often are placed
on water depths that for the most common waves are too deep for the
shallow water cnoidal waves to be used and too shallow for the Stokes’
second order waves. This problem is solved with the second order wave
of this chapter which has a surface profile that is described with
the same cnoidal function for any water depth., This makes it possible
to follow a wave from infinite depth and until just before it breaks,
and express the gradual change in surface profile, velocities, pres-

sure, etc,

INTRODUCTION

In chapter VII we saw that the second order sinusoidal wave
may not always be so good in practice. The cnoidal wave of chapter
VIIT could only be used for shallow waters. So there is a need Tor
a new second order theory.

The basic theory of chapter IV, that led to the first order
progressive wave on arbitrary depth, and the theory of chapter VI
that led to the deep water cnoidal wave, will here be continued %o
give the progressive cnoidal wave on arbitrary depth.

The final formulas will be checked to be reasonable.
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BASTIC EQUATIONS
We consider two dimensional progressive waves of permanent

form. The bottom is horizontal,
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Fig. 1. Definition sketch
From the definition sketch we see that
y=D+9 (1)

v{(x,t) is the actual water depth, D is the mean water depth, and

g
]

?(X,t) is the surface elevation.
The equation of continuity gives

09 _ 3y _ _9n
o= 5r =~ 98 (2)

where q = g(x,t) is the water discharge through a vertical.

Further we have for a progressive wave

N .. A0
S&=-0

¢ is the celerity. Eqs. 2 and 3 give for a wave without a resultant

(3)

discharge

1= cp , (4)

g can also be found by the integration of the horizontal velocity

u = u(x,z,t)

q=ﬁudz (5)
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Iike in chapter VII we will write the unknown vertical dis-
tribution of u as
S q; R; shRiz
= g_é, == : (6)
sinh Ry

and then we will investigate only one of the terms

w=qR cosh Rz cosh Rz (7)

sinh Ry sinh Ry

For the first order wave, R was a constant R = 2n/L = k. For the

,QV?Q

second order deep water wave we also had R = k. But for the second
order sinusoidal wave on arbitrary depth R was partly R =k and
partly R = 2k, using two terms from eq. 6, as shown in fig. 2 of

chapter VII. 2 and has R = k and only the small second order

?2a

?Eb has R = 2k, so writing the total wu as only one term, eq. 7,
R should be only slightly different from k in a second order wave.

To show the dependence on the wave height we could write

R=k+BkZH (8)

But we can make a bhetter proposal. If we wanted u in fig. 2
of chapter VII to be written only as one term in eq. 7 with a cosh Rz
distribution, then it is seen that R should be slightly bigger than
k for the crest and slightly less than k for the trough. This

makes us propose
R=k(1+pkag) (9)
instead of eq. 8. For deep water waves we would then find B = o,
We could also combine the information of egs. 8 and 9 and write
R=x(1+8k¥p) or R=1r +p kgv (10)

where v = r{H) so that

r » k for k He» o (11)

?

and so that r ’differs from k only with a term an order smaller’,
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This means that we may also write

R=r(1 +8 lﬁ—g ) (12)

which makes the dependence of R on D, less for bigger wave heights.
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Fig. 2 In a second order wave we now want to express u as only
one term with a cosh Rz distribution. This means that R
must be a function of =x,t instead of just a constant.

Here in the beginning of the development of the wave theory
we could give a lot more proposals for R, but for some time we only
need to be aware of, that R = R(x,t) 1in the general case, and that
R 1ig a constant for infinite deep water, and we can use either eq.
9, 1o, or eq 12. (The final expression for R will still be changed
at the end, see the appendix.)

Through the equation of continuity

ow omr
6X+ Oz =0

and with the condition w = o at the bottom =2z = o we get for the
(

(13)

vertical velocity w = w(x,z,t)
w = @%%{wi%kz Rcoth QQ]%

_ OR =z cosh Rz —ycoth RY sinh Rz
< 1°5x sinh Ry ()
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OR

With the new x-dependent R we got an extra term with 5%
in the expression for w. We see that the term is of second order
magnitude. With our experience from the previoug three chapters of
developing second order theories, we know that whenever wanted sub-
stitutions with the first order expregsions given later in eq. 26 is
permissible in the second order terms. For infinite deep water we
have %% = 0, so that the extra term vanishes. We see that at the
bottom 2z = o, and at the surface =z =y the term will always be o.
We shall now show that otherwise the term can also be neglected.

For shallow water first order sinusoidal waveg certain

approximations can be used, such as

Rz cosh R 2% ginh R g (15)

Ry coth Ry oy (16)

Rz sinh R z® 20 cosh Rz - 1 ] (17)

This can be seen out from the Maclaurin series for Ry =k y= o
or D/L<» o. For our problem here these approximations can only be
used in second order terms in a shallow water theory. By this it is
seen that the last term in eq. 14 will be zero in a second order

theory. Thig approximation is considered further in the appendix.

So for w we end up with only

(18)

The vertical particle acceleration GZ = GZ(X,Z,t) = =2 ig then

found from eqs. 18 and 7, and then the vertical dynamic equation

W%%“Xﬁ@@z (19)
gives us the pressure p = p(x,z,t) by integration
2(: "0 1 _[o(O\2, 0N -
= y-zr GISRR LY +n 5 coth Ry
h Ry -cosh R 2 o h 2Ry - cosh2R
e s[nqh gj < QPT‘;?K%% ~ 1 ég} < sm‘; 3%3 ZEZC’)
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v is the unit weight, @ is the unit mass, g is the acceleration of
gravity, so y = (L8 The constant of integration wasag = 0 at the
surface z = y. In eq. 20 we got an extra term with A% like in eq. 14,
but again the term could be neglected,

It is though not possible to continue to have all the terms
with aR neglected. For the horizontal particle acceleration GX =

8x

G (x,z,t) we find
e

- du . ow o o
Gy = 5f = get+ 4 + WgE =

_9np cosh Rz oN 2 cosh Ry coshRz + 1
-GRS3 Ry T ox R sinh2Ry

~ OR 2[cosh Rz 1]
an sinh Ry (1)

is w-«w w&\t—zmﬂ% 1{2
e - —H T~ - - —— - e
| %%‘ T
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Fig. 3 1In calculating wave forces on piles it is of interest to
consider the horizontal particle acceleration ¢ = du/dt
in eq. 21. The second order term with BR/dx can then in
practice usually be neglected. For deep water waves we have
BR/Bx = o, With R = k in a second order term we have that
for shallow water cosh kz is close to 1. And further we
have that usually GX is of importance when 9 is not so big.
So for GX we can use the usual expression, only with a new
value for R, just like we could use the usual expressions
for u, w, and p.
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Differentiating eq. 20 we can get the following expression for 3p/§x

¢ {54137

.coshRu—coshRz . on o

sinh Ry oK~ ox*

AJOno*n . %] coch 2Ry ~cosh 2Rz
+ I_»gm% VZ@XS‘“E Sinh 2Ry

_9*n 1 oR coshPuy ~coshRz

~ Ox% R* 0x sinh Ry

o*n 1 OR 1 OR Rz sinhR
+ 5 for §ic Ry coth Ry) tanhRy — Sk sinhRy

_0*n 1 _oR Ry cothRy (coshRy —~ cosh Rz)

T ox* RTOX Sinh Ry (22)

The ¥R/Ox terms of eq. 22 can be reduced to, using eqs. 16 and 17

o'n i o 1 0
—257 L 57 3560‘5’1 Ry +m@w»z-a§ tanh Ry
+2 O 1 oR 1

ox* R% OX sinh Ry (23)
Through the horizontal equation of momentum
*)
-5% = P Gy (24)

we find another expression for 3p/dx, Eliminating dp/dx from the two

equations we get the wave equation

9.9n, 0% 1 cosh Ry-coshRz _ 90 cosh Rz

C2ok " oxB R sinhRy oX N sinh Ry
+900% _1(,0D 0 .y d%] coth Ry Laosh Ry--cosh Rz]
2 5% 16528805 Sinh Rg

2 cosh Ry cosh Rz + f [@w 0% Oc) mc,ostRM _cosh2Rz

N %R Smh*Ry ok oxt (Y sinh*Ry

o OR coshRy—1 . o dQJ_
~ 258 5% R2 sinh feg"“ax%_‘@m“m%

OR coshRz—1 _ | i
ZW : Oszmlfzég =0 <_2b>




223

In the first order terms it is important to remember that now R 1is
variable, so that when using eq. 10 we get extra second order terms.
If we keep only the three first order terms from eq. 25 we

get the first order solution

ngziz %Coﬁk()(w/@t) ka%%ﬁ: (26)

THE CNOIDAL SOLUTION
When the second order wave equation was used in chapter VII
to find the second order sinusoidal solutions, the first order solu-

tion, %4 had been inserted in all the second order terms of the wave
equation.

However this time some of the second order terms in the wave
equation, eq. 25, are only approximated in view of the first order

solution., For instance eq. 26 gives

2 2
%:~k27 / g—x%: ”kz?%? (27)

so that e.g. the following substitutions can be made in second order

29 W A0 0 " N0 . ONOT
gfgxlg - V@X@ J '“75}%2 R VZ@% “SLoHE o

terms

Further R =k and y = D can be used when needed in second order
terms.

The wave equation, eg. 25, is solved by splitting it into a
z~-dependent equation and a z~independent equation., The z-dependent

equation will be

110 02 N m&hzﬁ B
m%lﬁgng@XgI giﬂh2Q§ = (29)
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With eq. 28 we see that the term with cosh 2Rz will vanish. Remem-
bering that r can be substituted by k in second order terms,

eq. 29 will reduce to, after some calculations using egs. 1o and 28,
%;% = W%}?Q[Q% 6v?k2w%hkb+ Z@V?km‘]
== 2[r*+ bnkicoth kD+4BNK®] o

It will now be shown that a solution to this equation is

n= H cn? ZKX czf)wwzf (31)

with the negative trough depth by

Qt m K (32)
where K = K(m) and E = E(m) are the complete elliptic integrals
of first and second kind and m 1s the parameter = +the square of

the modulus,

Qt is found from the definition of the mean water level by

the integration

S;de =0 (33)

It 1s known from chapter VIII that for small waves

cn e® cos, Kmﬁ%, Em}";—[ for m = o0 (34)
and
H
?tw»—g for m-» o (35)

By dlfferentlatlng eg. 31 once to get a‘Z/DX and three times to get
@?/@X it can be shown purely mathematically that

( BP}/@X and @%}/@X are given in chapter VIII.)

This expression is inserted in eq. 3o, The second order terms of
eq. 30, containing %%VZ can be approximated in view of the first
order solution, eqg. 26, so th = _"21:1' from eq. 35 will be used when

substituting n in eg. 30 by eqg. 31.
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Then we get

T2+ B i K x-c ) -

2+ 6k (coth kD +4 )H[CHZ_ZEK-(XWCO—*%J - en

This equation is split into two equations, one depending on the cn-

terms and one depending on the other terms. The cn -dependent equa-
27
"I',"i

K= >4 coth kD +5)] (38)

The cn-independent equation gives, using eg. 38

rv:éfﬁ 1"%1 (39)

For me«»0 eqg. 39 gives r-pk = %?3

tion gives the condition, using k =

the first order sinusoidal
expression.

We have now showed that the z-dependent wave equation can be
fulfilled with % in eq. 31 under the conditions specified in egs.
32, 38, and 39. But the z-independent equation must also be fulfilled
under at least the same conditions.

In a second order theory we can use

= R
coth Ry = coth RD-

(40)
Using eq. 1o we get
coth RD = coth(r + k™)) D

~ A+ tanh rD tanh(k*nD
tonh r) + tonh kzk‘?‘D

In view of the Maclaurin series we get, neglecting higher order

(471)

terms

coth R = coth rD +[§kér? tanh kD (42)
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cnoidal theory
experiment

MEAN WATER

LEVEL

H/L = 4.3 % , H/D = 0.476 , L/D = 11.0

cnoidal theory
experiment.

H/L = 9.1 % , H/D = 0.178 , L/D = 2.02

Fig. 4 and 5. Surface profiles of waves ﬁassing a wave recorder in
an experimental flume compared to the cnoidal theory
of this paper.
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The z-independent equation from eq. 25 will be

ij“ I | on ggz
¢+ 5”2‘5‘%%] C@éhz Qg r k’?@)é sinh® Qﬁ

1100 0% _ . 3% cosh 2Ry
+$£5_g ggm d @x-ﬁ%] sinh?® Ry
' OR coshRu—~1 . % OR 1
= 275 0% "R sinin Ry oxE ox w? tanh Ry
OR 1 _
T 205% Sion Ry 0

%gg-% is substituted by eq. 30 with eq. 1o and using egs. 28, 40, and

42 we get to the second order after reduction and division by B?ASX.

g, —reothrD + Qk%’%{@“ZﬁOkl@mh kD=0 (4)

This equation is split into an ?Fdependent and an ?—independent

(43)

equation to give the further conditions

B= 3coth kD
2 sinh?kD (45)

et = L tanhrD (46)

Our second order wave is now determined. Wz fingd 8 from eq. 45 and
then mK2 from eq. 38. From mathematical tables of elliptic functions
it is then possible to find m and X and then c¢n to be used in
egq. 31,

It should be emphasized that although the cnoidal solu-
tions given here are correct to the second order, it is possible to
find other cnoidal solutions of second order just by making the
approximations in the deductions different. This is due to the ’hid-
den’ higher order terms, which can be different in different soluti-
ong. It is then of interest to find the best possible second order
solutions. Of this reason the second order celerity in eq. 46 will

later be changed with third order terms.
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DEEP WATER AND SHALLOW WATER LIMITS.

411 the final equations given here will for D/L=® oo give
the expressions found for the deep water cnoidal wave in chapter VI,
For D/L ~»o we do not get exactly the same wave as the shallow

water cnoidal wave of chapter VIII.

DEEP WATER LIMIT.
Eg. 45 gives

- 3 cothkD
=2 sinh*kD >0 for' .,J%m:@ o0 (47)

Then eq. 38 will be

m K =T coth ke + § (o] —> T2 (18)

which is the same as in chapter VI. Then the rest of the expressions

will also be the same as in chapter VI,

SHALLOW WATER LIMIT
For shallow water $ 1n eq. 45 will be

(5.“,,,’3(:O‘anb_a_€> 1 .3 1 (LY
2 sinh?kd 7 2 (kD)? T 16 TED
for %m«%m} (49)
Then eq. 38 will be
e
mK* =" %]coth kD + 4] = 7> teoth®kD
mi_ﬂ%ﬁ L

.,W}?T (RD) ngD) for T~ 0 (50)

For the shallow water cnoidal waves of chapter VIII we have for 1L
2
(%5-) = m%;f» DK (51)

S0 mu: = %%(%)2 ' (52)
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So for shallow water there is a small difference between the cnoidal
wave of this chapter and the traditional shallow water cnoidal wave,
The crest of the cnoidal wave here will be a little less sharp. But

this wave will of course have the solitary wave as the extreme limit

for L/D <»co.

The problems with velocities will be considered later.

Flaitone second order
RN
e NS Oy )
: f“f%ﬁ?@.{.,.@!ﬁﬁm%!i_
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Lt = Al A5 =8.b =80 & 0% B4 S st A 40 ALY 4b 4.8 2

Fig. 6. The solitary wave according to different theorieg compared
with experiments of French, for H/D = 0.62 and H/D = 0.26.
The classical Boussinesq profile i1s given in chapter VIIT,

9 = H sech? (V3/2 VH/D x/D). The new profile is the solitary
wave limit of the cnoidal wave of this chapter, which gives

= H gsech?®(1/Y2 VH/D x/D). Further the profile of the
second order solitary wave of Laitone for H/D = 0.62 is
shown. As far as the experiments indicate the final stable
profile, it is seen that the classical Boussinesq expression
is the best, but the difference is not big, especially in
congideration of that the new expression as well can be used
for deep water waves,
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ROTATION

Rotation of second order magnitude in second order waves will
be consgidered.

Rotation and rotational waves could be examined here in the
same way as we have done for deep water waves in chapter VI. We would
then find that second order waves on arbitrary depth with first order
rotation would contain more terms than in the deep water case. But
here we will first consider second order rotation.

For the rotation we find

2 .

=gl O - Ay kP coth kD Siahkz (o)
where we in this second order term used R = k, and y = D. So the
rotation i1is a second order constant.

Because the rotation is only a second order expression it is
most easy to find it from the sinusoidal second order waves of chap-
ter VII, instead of the cnoidal wave. In the appendix of chapter X
1t is shown how to find such an expression from the cnoidal waves

The rotation of eq. 53 can be changed to a different second

order value by proposing u 1in eq. 4 to be

%P@txﬁqQM&% TR (54)

sinh Ry
where
2,2 cosh kk 1
au= cff) K oothid [EEE - ] (55)
8§ is a freely chosen constant, and for & = 1/2 we get irrotational

waves. At the surface Au in eq. 55 will then be

LA = ,QQ%)ZRZCOH\RQ Lmth kD — .Dl (56)

As this is a second order term in a second order theory it is possible

to use either R or r ingtead of k, if wanted.
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VERTICAL DISTRIBUTION OF HORIZONTAIL VELOCITY

In this appendix a better expression for R will be given,
so that reasonable valueg for u, w, and p ig obtained.

We succeeded all right in finding a new and better wave pro-
file in eq. 31, but we can easily convince ourselves that we did not
get any good expressions for u, w, and p with the expressions for
R in eqgs. 1o or 12 and for B in eq. 45. B will not be changed, but
R could as well have been given with a slightly different expression.

The problem is the skillow water limit D/L ~®o.

For B 1in eq. 45 we find

{
3 _‘?% <D)? 0 fO“TIS*ﬁ 0 (57)
From eqg. 38 we get
2 2
mK ﬁé—%%)“? © for 4> (58)
<

For m we have o m<€ 1 and for m $1 we get K 4o, SO eqg. 58

will be

2_ 1 HLV L
KW}SD(D) > 0 for 5> @ (59)

Eq. 39 then gives
2
r— 1%& (Tw}) — 152% for -5 = o (60)
In egs. 9 or 1o we assumed that B k ?t« 1, or B k V. is an
’order smaller’ than 1. This is sure true for infinite deep water,
when B = o. But at the shallow water limit we get (for a wave that
does not vanish), using eq. 57

3 1 :
ﬁkvm??(kb)z‘ghﬁ?oo for%m«%% (61)

So the second term in eg, 10 had to be changed. In eq. 12 we proposed

K3 )
R=r(+ %N 62)
This change of the expression for R will not change the golution

to the wave profile because the sinusoidal approximation of the se-

cond term will be unchanged

[3%0 ﬁ@kq for m & o (63)
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In second order terms we can use the sinusoidal approxima-
tions, and the second term of eq. 62 was only involved in second
order terms during the development of the wave theory.

From eq. 62 we get using eq. 60
K> ﬁm} . %‘51 L
@’HQ AL g —> for 5 0 (64)

So we see that by the proposal in eq. 62 the magnitude of the second
term is limited. But it is not ’much smaller than 1’ for the solitary
wave limit, where we at the crest have n = H. So the second term in
eq. 62 should still be changed, under the consideration that we still
get the same sinusoidal 1limit as in eq. 63, Rather arbitrary we can

propose

R = {1 +4tanh 55z n) (65)

which is a correct expression in the second order cnoidal wave of

this paper. For the sinusoidal 1imit, B k ? small, we get

5&%’7"7 5ﬁ ZVZ %@k‘? for 12O (66)

The maximum value of the second term in eq. 65 is seen to be 1/5 of
the first term. So eq. 65 seems reasonable.

There are different reasons why we end up with an expression
as edqe. 65 instead of eq. 12. We have tried to explain some of them
here step by step. The most important is the relationship of eq. 66.
This means that we can take eq. 65, go back to eq. 12 and repeat the
whole development of the wave with eq. 65 instead of eq. 12, and at
the end get exactly the same wave with 7 of eq. 31, r of eqg. 39,
and B of eq. 45.

In eq. 65 we have 5 in the argument of tanh and 1/5 as a
coefficient. The number 5 has been chosen out from comparison with
the expression for u for shallow water cnoidal waves found in
chapter VIII. This would not result in quite as simple an expression

but the number 5 is a reasonable average,
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When an expression like eg. 62 in a second order wave is not
fully satisfactory there are different ways of making better expres-
sions. It can be attempted to make a third order theory, which
changes all the ecxpressions. But if only one or two expressions need
to be improved, they may be found by special calculations that accept
other expressions for the second order wave as if they were ‘*exact’.
But the results can still only be claimed to be of second order. We
can just illustrate that by finding a different expression for R.

Let us consider the pressure at the bottom, Py s by substi-

tuting 2z = o in eq. 20, and then demand that

L
fpb dx = y DL (67)

For infinite deep water the pressure due to the wave must vanish at

big depth, which gives
62
r= < B_xg'a e (68)
; czYZ“L?F(B—@*’ZVZW%

so that r also for deep water depends on4‘?, as also found by the

third order sinusoidal wave theory.

- Fig. 7.

ﬁngC%}§3?€ A Comparlsog of the horison~
tal velocity below the

MWL middle of the trough ac-
cording to the Stokes’
second order theory and
according to the cnoidal
theory of this chapter.
The wave considered can

be : T = 10,1 seconds,
D= 8.0 metres, H = 5,4
metres,
S— E— oy AL The’trough depth'is rather
=85 w0 =04 O ~ different according to the

two theories, but the

velocity at the bottom

is close to the same,
The Stokes’ velocity profile is rather far from ful-
filling the condition, q = cn , but this does not seem
to be a disadvantage in the case here,
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Sinusoidal
calculations:

LO = 7.6 metres
H/D = 0452

L/D = 16

H/L = 353%

Lo = 20 metres
H/D = 004‘3

L/D = 27

H/L = 1,6%

Figs. 8, 9, and 1o,

Maximum horizontal
and vertical particle
velocities.
Comparison of the
cnoldal theory of
this chapter with
other theories and
wilith experiments

by M&hauté et al.
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CELERITY

In this appendix the celerity will be made dependent on the
wave height.

Let us consider how we found the celerity, c¢. The most easy
way to find ¢ 1in a second order progressive wave is to congider
the wave equation at the surface, for 2z = y. We then find from eq.
25 using ®R/8x = B Rgbqﬁbx

on(g o2 2 cosh*Ry +1
S{gz — Reoth Ru+ G+ nR L en

1L tanh Qg} =0 (69)

+ neglected third and higher order terms

By selection ] and R (and then pB) to be of the right
combination, as for the second order sgsinusoidal wave solution or the
more complicated for the cnoidal wave solution we may find the simple

expregsion

= |2t
L = VZTT tanh kD (70)

But it is also understood that this is only one of the many possible

expressions. By including some third and higher order terms or by
making different correct substitutions in the second order terms of
the type in eq. 28, or in the higher order terms we may get any

celerity of the type

c?= L tanh kD [1+ aH’] (71)

where a igs a constant, dependent on D/L. (This type of celerity is
found for the third order wave of chapter XI). For any chosen a

the above expression will be correct of second order and fit in with
the second order theory above. Then it i1s a question what value
should be chosen for a, Usually a dis put to a = o in second

order theories, but other proposals will be just as correct.
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So we can say that the second order expressions egs. 46 or 7o do not
give us a definite value. The second order expression only gives

an interval within which the definite wvalue should be found. This
interval can be narrowed by making a third order theory. We can also
select a specific expression within the second order interval, out
from some special conditions we would like to have fulfilled. This
ig what we will do here.

We will end up by writing ¢ somewhat different from eq. 71,
but basically it will be the game, i.e. it will only have a third
order difference from eg. To.

We could choose ¢ vrather arbitrary out from our knowledge
of the third order deep water wave, which for an irrotational wave

has got, eg. 52 in chapter VI,

Ly = \/%‘W e

and from the classical solitary wave (chapter VIII)
Co = 9(D+f (73)

We could then propose the correct second order expression

C = /% tanh kD +9(Z QC~H> (74)

By this expression we would get egs. 72 and 73 for L/D » o and
L/D » o0 as wanted. But for L/D in between we seem to get too big
values from eq. 74, so that it would be more reasonable to use the
classical sinusoidal expression, €d. T0.

We will now %try to find the celerity using the Bernoulli-
equation on the surface of our second order cnoidal wave., This pro-
cedure may not always be advisable, because it is based on rather
little information about the wave, here ohly the elevation and the

kinematics of the surface. But it seems to give reasonable results.
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Let us consider a permanent wave that moves with the celerity
c. To make a desired rotation the water hags a stream A u at the
surface. Then the particle velocities at the surface of the crest

and the trough are u, + Au  and uy + Au where U, and u, are

given by eq. 7 and Au e.g. by egs 55 or 56,
The hydrodynamic problem is made stationary by regarding the wave in
a co-ordinate system that moves with the celerity. Then the Bernoulli
equation can be used at the surface at the crest and the trough to
give
(0 U —all)f = o (c ~Up-au)”
e 2g < e 24 t (75)

Using eq. 7 and g = c? we get

%Hz = (1~ 24)|ncRe coth Re yo = R coth R,y
—3NERe coth®Reye+5 ERI cot®Reye
We will then make the approximation

R, coth Rye = Re coth Re Ye (77)

For infinite deep water eq. 77 reduces to r = r, For shallow water
D in eqg. 76 will be small, so then eq. 77 is not important. With
eg. 77, €q. 76 becomes

2 tanh Rege = 1= 24 fpe-GIRecotnRete ] (re)

We then get for ¢

Cch= (7*"%“)‘%; tanh chc*”Q(VZC“% (79)

For an irrotational wave Au is given by eq. 56. The celerity of

eqg. 79 has been compared with experiments.

?
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Fig. 11 Comparison of the celerity of the cnoidal theory of this

paper and the first order sinusoidal theory with the celerity
found in experiments by Tsuchiya and Yamaguchi. For the
cnoidal celerity eg. Tlo from chapter X has been used. It is
seen in some cases to give lower values than the first order
theory when experiments show the simple first order theory
to be closest to reality. For this reason we have chosen the
celerity of the table in chapter X to be the maximum value
of eq. 79 and the first order theory.

It is seen that for the realistic situation with waves

of T = 10 seconds period and a water depth of D = 10 metres
fig (c) is relevant, yielding results with good agreement
between theory and experiments.
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ENERGY

The potential and kinetic energy of the cnoidal wave will be
considered, and the energy flux will be given for calculation of
shoaling.

The mean value of the potential energy, for the cnoidal

B s
pot
wave given by eq. 57 is the same as for the traditional shallow water

cnoidal wave.
Fpot = 3{7( n*olx = f [ en*o-+n, ] dx
= gtﬁHzfm”@O&+2%fH 26 dx + Qj’i%

(80)

Which with egs. 31 and 33 reduces to

Epot = %%zﬁ LZ =5 4"3!{’7/‘12*%‘2(2”‘?“1)%}%}75 (81)

In eq. 81 it was possible to integrate the surface profile
directly, because integrals of cn2 and anr are known from mathematics.
With a perturbation solution like in chapter VII the potential energy
would be

L 2
Fpot = jrfo{w S (0F 20N+ DA ey

where the terms are of second, third and fourth order. But if the
golution for ? had been of third order there would also have been a
fourth order term, of 1% ?3. So 1t is a question if vg in eq. 82
should be included. As discussed earlier it can never be wrong to
include it as long as the energy is not claimed to be calculated with
a fourth order precision. It is also seen that when calculating
energy for a first order wave the energy will be of second order, and
for a second order wave energy terms of third order should be inclu-
ded, (also when calculating energies for shallow water cnoidal waves ).

?




The kinetic energy, E , is determined by

kin

_ 4 (L% 2
Ekln~“[££z"?(uz+\x/ )O(de (83)

Egs 7 and 13 are substituted into eq. 83. Fourth order terms can be
neglected and third order terms can be approximated by the sinusoidal
first order solution, also for the cnoidal wave. The first integration
glves no problems. The last integration can either be done numerically,
or an approximate value can be given analytically which is correct to
the third order.

With the bottom 2 = o as weference level the energy flux

through a vertical will be

Y
— 1 2 2] .
E;Wﬁi[p+g§z+2g>(u +w2) Udz (84)
p, u, and w are substituted by eqs. 20, 7, and 18 to give, after re-

duction

e = CKDO MEWZ*%%WZ{ 29 ot Ry - W@ﬂ]
-[i50+ Fngleoth Rufeotnfy - m%@—J
(5D %xﬂ] Z Ozsmh?@g RS

+3—r7é&?) Reoth Ry +—6V2 (gﬁz) R Cothzl?gj (85)

The last two terms are of fourth and fifth order and can be neglscted,

fi

‘ 2
The third order terms can be approximated, so that ?ERE = o ? ggg'@

The transported energy will then be

{2
[@th Ry~ girortzr) +[(92 o) Oéﬁz@fr@“—
4—(%] [“2“ coﬂozRgJ «‘%C@W@}dx

E trans
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The first term is known from the potential energy, eq. 81. The last
integral can as well be calculated numerically as finding an approxi-
mate analytical wvalue,

With the calculation of the transported energy it is possible
to use the cnoidal theory here for practical assignments wlth regular

waves as shown in the numerical example in chapter X.

/?:(j‘rc \
{j}.g" \‘

] . e

w55

Fig. 12. Comparison of the traditional shallow water cnoidal
theory, the Alry theory, and the Stokes’ theory with
the new cnoidal theory, with respect to the celerity
and the trough depth. At the shallow water end the
wave height will reach H/D = 0.8. While the traditional
theories have deficiencies at one end or the other,
the new cnoidal theory can be used for any D/Lo°
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COMPARISON OF CNOIDAL TERMS FOR THE VERTICAL VELOCITY

The neglected term in the expression for the vertical velo-

city will here be shown to be negligible. Bq. 14 will be written

W _0n sinhRz , none 1
¢ =~ 3% sinh Ry 7T R simnry A@)

+NGRR sy B (67)

where A(z) and B(z) are the functions we want to investigate.

They are seen to be

Az) = cothh Ry sinh Rz (88)

B = / -]z cosh Rz ~ycothRy sinhRz] (89)

For R we ended up with the expression of eq. 65, which gives

oR _nk*0 1

% =P 55 cenrsp R (90)
so that for the positive values we get

9= PR

This expression would also be a result of egs. 9, 1o, or 12, Using

eq. 91 in eq. 89 we get that numerically B(z) will not exeed

B(z) = (A% kz cosh Rz — kycothRy sinhRz] (s2)

A(z) of eq. 88 and B(z) of eq. 92 are compared in fig. 1%.We know
from previously (egs. 9, 10, 12) that R is bigger or smaller than
k depending on the part of the wave considered. So for convenience
we here consider the situation with R = k.

We see that A(z) is more than 1o times bigger than B(z)
even for transitional waves, so in eq. 87 (or eqe 14) it is right to

neglect the last term as much smaller than the second order term.
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APPENDIX VII

PRESSURE
The expressions for velocity and pressure will be considered
again,

For u we have eqg. 7

cosh Rz
u=c ? Rsinh Ry (93)
which can be used for any type of wave, from deep water waves to
solitary waves.

Below the crest of a solitary wave we find for R from egs.

65 and 60

R = (94)

() ¢ $ L ¥ 3‘7 =
o &4 8 6% o4 8.5 bBbhL 8T 8.4

s
o
-
;

Fig. 15.The horizontal particle velocity at the surface and at the
bottom of the crest of the solitary wave according to eqg. 93
of this chapter compared to the shallow water expression of
chapter VIII,

It can then be of interest to compare eq. 93 for the solita-
ry wave with the equivalent expression for the solifary wave from
chapter VIII. This is done in fig. 15. We see a small deviation for
bigger H/D, which may indicate that r Iin eg. 94 1s a little too
big, although figs. 8 and 9 do not give this result.

In the third order cnoidal theory, terms with m2 will be included
in the expression for r, which is of importance for the solitary

wave limit.
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Fig, 16.The pressure at the bottom of the crest of the golitary wave
according to eq. 95 of this chapter compared to the shallow
water expression of chapter ¥I1IT.

For the pressure we use eqg. 20, which below the crest will give,
when also the neglected terms are included,
252

9
-$-= y - Z + gﬁg;{gﬁ[’] - RVZCOth Ry]

cosh Ry - cosh Rz
ginh Ry

cosh 2Ry ~ cosh 2Rz§ (95)

1
-7 R?[T - thcoth Ry ] sinn? Ty

Eq. 95 is shown in fig. 16 for the solitary wave, together with the
result of chapter VIII. So the only neglected term for this situation
was a third crder term. The problem is that with R in eq. 94 the
negligible third order term will be as big as the second order term
for H/D near 0.8. Thig means that we can as well propose the whole
term with cosh 2Rz to be neglected, because it is without import-
ance for higher waves and because it ig small of second order for

smaller waves. This gives us a more simple expression

2 52 '
P c“ 9 Q [ cosh Ry - cosh Rz

=y - 7 4 = - R coth Ry ; (96)
sinh Ry

Y gR &x*

but it is not a complete second order expression. For waves with
H/D > 0.5 the second order expression ed. 20 should not be used be-
cause the higher order terms are too important (unless a different

expression for R is used) but instead eq. 96 can be used.




APPENDIX VIIT 246

DIFFERENT CNOIDAL SURFACE PROFILE
It will here be shown how to develop the wave theory so that
the shallow water limit will be exactly the traditional cnoidal wave.
We go back to the z-dependent part of the wave equation, to
eq. 29. With eqgs. 27 and 28 we got eq. 30. If we had not substituted
azQ/EBXZ with eq. 27 we would have got

% 2,
(%g=_§§[r2-6g§gk coth kD + 4BVZK3 ] (97)

With ? from eq. 31 we get (see eq. 18 in chapter VIII)

z 2
%;Q = - §%zﬂ [m=-1 -2 (2m - 1) cn’e 4 3m onﬁﬁ ] (98)

This i1s used in a second order term in eq. 97 so we use the sinusoidal

approximation which we get for m -%#o. Then eq. 98 will reduce to

2 P
§%§;= 5%?E [ 1 -2 cn°@ ] (99)

K is expanded in the Maclaurin series (see eq. 56 in chapter VIII)

2

2 %(1+§+mq (100)

K =

Egs. 99 and 1oo are used in eq. 97 together with eq. 36 to give

2

16 X [ 1 -« 2m + 3m cnzé ]

La

3
= r° - 24 %a % (1 + %)(1 - 2 cn®® ) coth kD + 4k H cn°®

(101)

The cn2@ ~dependent equation then gives

2 _ 3H n 2
mK™ = 7 T (1 + 2) coth kD + 3 Bl (102)

In the same way the z-independent equation eq. 43 and eq. 44 can be

arranged to give for B

_ 3 coth kD m
~ 2 sinh2 kD (1 + 2> , (103)




By this eq., 102 will be

mK< = [ 1 +12£ 1 5 %cothBKD (104)

For the shallow water limit we then find, for meyl,

2 3 2
mK~ = e ) (105)

S

G
This 1s the same as for the traditional shallow water waves of Korte-
weg and de Vries.

But when substituting X in eq. 99 with eq. 1oo we can say
that we in eqg. 98 took one term along with m but dropped the other
terms with m . This is correct as long as we do not claim eqg. 104 to
be determined with bigger accuracy. The third order theory will tell
us if we should use [1 + m/2] on the right side of eq. 104, or we
can use some special condition, like a demand to the solitary wave

limit.

Stokes second order sinusoidal
Traditional shallow water cnoidal
New cnoidal

Fig.17. Using the equations tabulated in bhapter X we find the shallow
water limit of the new cnoidal wave slightly different from
the traditional cnoidal wave, but in this appendix it ig shown
how to express the new wave so 1t will coincide with the tra-
ditional wave.




	NMJthesis 1
	NMJthesis 10
	NMJthesis 11
	NMJthesis 12
	NMJthesis 13
	NMJthesis 14
	NMJthesis 15
	NMJthesis 16
	NMJthesis 17
	NMJthesis 18
	NMJthesis 19
	NMJthesis 2
	NMJthesis 20
	NMJthesis 21
	NMJthesis 22
	NMJthesis 23
	NMJthesis 3
	NMJthesis 4
	NMJthesis 5
	NMJthesis 6
	NMJthesis 7
	NMJthesis 8
	NMJthesis 9

