CHAPTER VITII ‘762
PROGRESSIVE CNOIDAL SHALLOW WATER WAVES

ABSTRACTS

In this chapter the traditional shallow water cnoidal waves
are considered., It is shown how they can be developed in somewhat
the same way as the waves of the preceding chapters, avolding poten-
tial functions. In this way the wave does not need to be irrotational.
Otherwise the wave profile will be the same as the traditional one,
given by e.g. Keulegan and Patterson in 194o0. Most of this chapter
is a copy of a thesis by the author from 1971, with the expressions
for particle velocities, pressure and energieg, and with graphs for

calculations of cnoidal waves and the solitary wave,

INTRODUC TTON

In the preceding chapters we have developed different sinus-~
oidal waves., In the first order wave theory we found that we had to
neglect termg that were not so negligible for realistic waves. For
the second order wave we found that the sinusoidal theory could lead
to unrealistic results specially for waves on shallow waters. So we
turn our attention to the shallow water cnoidal waves.

In chapter VI we developed the cnoidal wave on infinite deep
water. This was not so very complicated. The cnoidal wave on shallow
waters may seem to be a little more complicated. But they have been
known since 1895 (Korteweg and de Vries). Reasonable expressions for
the particle velocities, the pressure, and the energies have though
been lacking. Those copied here were found in good agreement with

experiments,

In the next chapter a different theory will be presented
that includes also the shallow water, a theory that does not neglect

some questionable terms.




BASIC EQUATIONS
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In the first order sinusoidal theory, chapter IV, we found

the expressions for u, w, and p

U= ¢ cosh kz
- yz sinh ky

W= - o QQ; sinh kz
Ox

gsinh ky
2
P _ _ W.E 1 cosh ky - cosh kz
Y P o E gk sinh ky

Expanding cosh and sinh in Maclaurin series we get

2

cosh kz = 1 + <if) + o
(ky)°

ginh ky = ky + a T

In a first order theory we can substitute y = D +

get for the shallow water limit of eqs. 1,2, and 3,

the well known

W= - C o z
B ox D

Popasn -

Y e

But including still a fterm in eq. 4 we see that u

2 .
z , 80 we write for u

2

2%+ ¢ ()2 p(2)

fdjan

u = u (x,t) is the velocity at the bottom z = o,

b b

(1)

(2)

(4)
(5)

by D. We then

i.e. for D/Lyo,

(6)

(7)

(8)

also depends on

(9)

ub1 and ub2

are arbitrary functions of x and t. F(z) is an arbitrary func-

tion chosen so that the last term has a second order magnitude,



For TF(z) we want the condition to be imposed

Y
g F(z) dz = o
o

and for u we remember the condition

gy
q:C = u dz
(G R
The equation of continuity

du  Ow

ST TS, = ©

and w = o at the bottom gives for w using eq. 9

dup

_ 1 Oy 1 om
=5k 2% 9x ¢ T3 dx
The rotation will be
du _ Qw Hy2 9F(z) |, 1
- dz ~ Ox © (2) oz * 3

+ (2 u +

+ b2

Yh1

Ll must be a constant in time, so we get

Yp1
as could be expected from eq. 4, and
*uy,

2ub2 -7 x%

Then eqs. 9, 13, and 14 are changed to

1 2% 2 5|
u=u -z 5325 z" + ¢ (5 F(z)
o 1 9%
we -G g Sl S
~ H.2 0F(z) 1 9%u, 3
L = C(D) e “ & 34 2
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Later we can show that the last term in eq. 19 i1s negligible in this

theory, so the rotation will have the second order value
Q. (52 9R(z) 5

° 5 5L (20)

So the arbitrary function F(z) was included in eq. 9 simply to get

a desired rotation. Choosing @F(z)/dz = o the wave will be irrota-

tional, like the classical cnoidal waves.

We will later find that 3% o 2 £ d and

e wi ater fin a Eﬁ?f an 3x3 are of second an

third order in this shallow water theory. This means that they can

be substituted by the simple first order shallow water expression

of eq. 6. Then w, eq. 18, will be

- 1.12% 3
w=-322 +70C - 5;2 Z (21)

At the surface gz =3y

3,
= %#ﬁ c §§-§-+ % c g D (22)

We here used that in second order terms y can be approximated by

I

D + i this will be, using eq. 6

D  when needed.

The kinematic surface condition
S,y 2
W, = 5E Uy 5% (23)

then gives, using eq., 6 for u in the last, second order term,

dup ? aﬁg o
- @L; D - ¢ 52‘ + c by D2 é)j? + 52 (24)
or
o ) 2 2

For a permanent progressive wave we have

5] 3
52 = - c 5% (26)
and in second order terms we can use the sinusoidal first order ex-

pression for c¢

c=Vg7D (27)
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Then eq. 25 will be after differentation with respect to t

%My, az‘gz o2 Uk D° 52{’2
" Az DT om - e DgxE (g T e (28)
The horizontal dynamic equation
du  du du du
GX = T T Uox TV Az (29)
is wanted at the surface, 2z = y.

In second order terms we use y = D and the sinusoldal expres-

sions, eqgs. 6 and 7 so with egs. 17 and 26 we get

dug 2D % 2 1 din?
Ces = 3L *° 2 3%5 ¥ ° 307 5x (3o)

For sinusoidal waves the pressure is hydrostatic as given by eq. 8.
For the classical shallow water cnoidal waves the pressure is also

assumed to be hydrostatic, so

J.sz,_gg
Yy 0x ~ Ox (31)
Comparing with eq. 3 we see that this means that the influence of the
vertical acceleration is neglected. For infinite small cnoidal waves
this may seem reasonable, but not for more realistic waves. In chapter
IX we find a different cnoidal wave for arbitrary depth. Then we in-
clude the vertical acceleration term in the pressure.

The horizontal equation of momentum

2p

“ax - € by (32)

then gives for the surface with eqgs. 30 and 31, and substituting ¢

in second order terms with eq. 27

2 45 2,
d 1 L D° 1 9
LS, 0 2y, 120D (33)

which is differentiated with respect to x

2"y o* ‘ % 2 . p° %
‘axat=gé§§+%'é§z<§£5 :;;3;‘;2) (3%)
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Together with eq. (28) this gives

>* 2 2 o
5&% Xi + gD éxz ( + 3 ?éz (35)

which is the governing differential equation for the shallow water
cnoidal wave as given by Keulegan and Patterson. Their procedure has
been followed to some extent, and their theory can be used from here

on to give the expressions for the wave parameters : the celerity C,

the wave length L, the crest height Vhf and the surface elevation QG

The following is a copy of the author’s thesis from 1971. The
notation used can be found at the end of the chapter. It is differ-
ent from the rest of this thesis at only two points : instead of the
parameter m we here use the modulus k in the Jacobian elliptic
functions, where we have m = k2 (the modulus 1s used in the courses
of mathematics at the Technical University of Denmark). In the part
with transition from cnoidal to sinusoidal theory 2n/L is then
called R instead of k , as we for the first order theory of chap-
ter IV get R = 2n/L. The symbol y is not used for the actual
water depth D + fl, which makes the expressions look longer.

The equations from 1971 are indicated with ("), e.g. the
celerity is given in (7°). Egs. (1°) to (6*) and (14°) to (16’) are

not taken along here,

The celerity ¢ or C will be

(7)
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The wave-lerigth, L, is:

- %2>01%% ek o K(k) (8"
A 3

i

Prom (7% and (8) the wave-period, T, will be:

2 R R

t o> e oo e D e 1 - 3 b

A <520

D .k

The crest-height, Nes Will bes

H E(k) 9
nﬁ:m°(1”“1 (10)

e k2 K(%)

and thereby the trough-depth, Ny (negative):

_ o _ H 2 B(k) ")
'f]tu—’ﬂc ﬂ——‘;«go (1 -k ’“W> (1])
To avoid misunderstendings the absolute value fﬂt! will
be used hereafter, With cn being the Jacobian elliptic
cosine function the free surface profile, n, will bec:

| LT _,2 3
n o= - !ntf+ Hecnn™o (12)
where g 1s equal to:
p=2 - K(x) o (E-0 (13"
i L T

in which x is the horizortal co~ordinate and t the time.
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Fig. 1. In the shallow water limit the sinusoidal theory will give
a parabolic velocity distribution. This can be used in
second order terms to find the cnoidal theory,
PARTICLE VELOCITIES
The derivatives of n are got from (12) and (13
a e I{ k ° I{ ° o
-gg = - 4 £ ) e 811 f - ¢cnn § o dn exxm-4 Kjék) il
o ’\/01'128 o (1 - 01129) . (kg b2 . onze) (17
2 " .
@._.121 - .8 K (]g) - 5, (cn29 o dn29 - snze o d112@
X

8 o K°(k) - H [ %2
- C

- k2 . snge . 01’12@> = - 5
L

20 (1% - %% . en® 45 . k2 - enty]
.

c (18)




) ) 170
- anp + k° . cnze + dnze)

(- %

2

64 o KO(k) + H
LB

© 81 f e Ccnn § - dn § = o (kg - k2 + % o k

. cnze) . J;ﬁge - (1 2

¢

en®e) -+ (x5 + %% -+ en®) (19"

The horizontal velocity is found from eg. 17. We will con-

sider the situation with F(z) = o, i.e. for irrotational motion.

Then we get

2 371
b
u(z) = Up = B o el (20"
b 2 BX2
The water discharge, Q , through a vertical is then:

D+ n 3 a2u
Q= w(z) « dz =u, o (D4 ) - BFm 2 Db (21
J b 6 2
0 AX
By looking at two closely spaced verticals it can be

deduced that for permanent waves in water with no stream,

Q will also be:
Q=0 - n (22)

Determining « later the following substitution is made:

. .2
2 3 DT
d (D + m ts)
(D + fn) o !J' ® C a N ‘g = 6 ]) ° 2 (233)
OXK AX
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(27), (22) and (23" are then combined:

Cem=u > D+mn) - (D+mn) «p-0 . ﬁwg
OX
ub:C“D+n+H°O°waX2 (24)

If as an approximation sinusoidal wave expressions are used
with (D + ﬂ)3 ~ (D + n) - D% and Uy = o (2%3) yields:

o= (25"

S0 the derivatives of § in smaller terms are put to O,
whereby (2@} with terms of no more than 3rd order in
derivation or power or a combination of derivation and

power yields:

oy, D an .. oa7n )
== ZC,WM2°W+HO<,°W,3 (26)
) (D + n) © 3%
2
3 U 2
gb = (¢ o D o jfm_ W.gwwz. ® (.%}%)2 R 1 5 ° el g] (27%)
3% = (D + n) ' (D + n) X
3 5
" Yy _ . D 6 .,(.é_ﬂ)g,_ 6 .21 . 23
5 ¢ 4 ax 3 X 2
% (D + 1) ’ (D + m) dX
4
5
+ 7 2 ° "?J (28)
(D + n) DX
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u is fowmd from (219, (229, (24" ana (27) whereby (20)

gives u(z):

2
u(z) =0 - {D E - + 3 . g (D + S) D
' 6 o (D + n)
2 2
. 2 3N 3 M|
|55 s 50 - “‘a"‘“‘X“éJ} (29)

The vertical particle velocity, w(z) , 1s got

from eq. 18

. 3
<
oUy, Zj 37y
W’(Z) o oe= 7o »S-%-m + .m(w o o
> 2
OX

Here sufficient accuracy is obtained by using (25) in (2@)

whereby also (26" gives:

_ D on , D 3717
'W( Z) = 0 o f e ° e T el I )
I [(7) + 1])2 ox Q) aXﬁ.J
. B z
g e D ey L e, 2T
(D 3 'ﬂ) L(D 4 ﬂ)2 oxX D+ i AKX 5X2

+ T .9 ﬂf} ;
[3) Sy (30
Instéad of using (25°’) it is possible in (26’) to include the
term with §M/§X by using (23°) and (27'). 1In (26’) the term
3 2 3 2
p¢ &F wil then be changed with g[g@ " (D%?)z ( _f‘t% %iz g—}%]

This will make a slight change in the expression for w(z) in (307).
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PARTICLE ACCELERATIONS

By differentiating u(z), (29) and w(z), (30 we get

BU(ZQW =0 . L D . 31 5 @ 22 - (D + T‘!>2 )
M’t = u “W'W“‘W;E ‘7““:6 o i 5
0 (D + n) 0 6+ (D + 1)
o | 6 . 9mM . (oﬂ)g _ 4 . on . 521“)
(D + n)Q R 3X D+ m oz ax - a3t
SR X1 aaﬂ + ajn ] - 2
D+m " 9% 2T 2 st 0 0 (D)
[~ (29 9] - 21 (31)
D+ n \3x BXZJ ot)
oulz) _ 4 . { D - - an _ 3 . Lo (D + g)z .
X % _ _
o (D + n) ox 6 - (D + m)
W«.;Gw 9 (@,«.I..’. m6 o a,n ¢ a 'n 4 .@».iﬂj
N2 Ny 3 b
(D + n)“ X D+ n X % an
- D B =S (aﬂ)g B (32"
3 (D + 1) LT 57 X 52 3xJ
2
yu () D 2 31 37 3%)
E et SowdlV S O o 7 e o ° ( ) e~ ()'5)
3z D+ 2 B T 7 Vax 5X2]
GW(Z)« - C ° {...,. 7 [m 2 : :Dw © ..Q,Il L ..a...T—El -+ :D 2 k3 azn ”t
- S X
ot (D + n)” ox 9 (D + 7n) © o
- 74
w2 2 [ D °lr'“””"“"'4’:‘”“““3“°“%"(m))
. e X
R - (D + 1)° (D + n) 0 o
2
s D .oamy” . _ 2t 5 .3n . 2an. 2%
X ° 2t (D + )2 X v
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S N Bgn_naggm ! @.,nmgiﬂ,,m
D+ n dX = 3t 3% D+ n OX 3x° o 3t
- 1 L an . 20y b ot ) (340
ey 8t 37 E Sl . M_JJ
owlz) _o . fo, .o 22D , an, D ;- 20
o L G N R
4 2 - 4 4
+ % . ?"} + 50 W.W@Ww:ﬁ ,LM e <n§£> + 6MM?
ax " (D + n) (D + n) ’ (D + 1)
2 2 Y 2 2 %
| 7 | 3 M 1 an , 271
(2 L P L S
X 5X2 D+ n 5X2 D+ n X -
4
1 CLan . aon + 4 2t (35"
e 2 O
3 (D + 7) X N 6 Nyt
o
aw(z) ( D 2n _ D  3'n 2 D
RY: =0 B (D N X 5 3tz 2
Fn) o (D + n)
[ ) (5’ﬂ)7 3 on BZH 1 557’]"} ( ‘3)
[ et U sy — s e wwente 0 =S e 56
The horizontal particle acceleration is then
du(z) _ du(z) su(z) du(z) S
Ot = St -+ U(Z) 3% 4 W(Z) o '“*"“'g"éw (/7)
and the vertical will be written as:
dw(z) _ aw(z) 2 - dwlz) o dv (%)
at— T Txv T ulz) x0Tt w(z) o7
= By(n) + 2+ By(n) - 27 & By(n) - 2° (58
where B1(n) , B2(n) arnd Bg(n) are found from (34), (29,



(%5, (30" and (36). In
to dnclude o more “hau

and B3(n) = 0 . Using

many cases it will be reagorable

e Grder terms whereby Bg<ﬂ) = 0

Q) N

m«n I s C ° ”a__‘l:l a,ﬂd

t DX

Q)

2 2
3N _ _ .30 - DI D
S%TTST T C D 431(’]’]) will bes
oX
2 2 2 2 -
) 1 > 317
By (n) = &= e & g (59)
D+ n) o %
PRESSURE

The vertical dymamic equation of an infinitesimal

uriit cube vields:

aplz) _ . _ x, du(z)
Y { 2 ds

where vy is the unit weight of the water. The pressure in

the water, ©p(z) , above

atmospheric pregsure ig found by

integrating from the free surface D + n to =z , using

(38" and (39):

2 e 2
) C™ D 1 an
() =y-(D+ m-2) + f S To L2
2 (D + n)) LD+ n QX
62 R 2 27 . b
+ ~m§J . [(D + n)° -z i (407
oX B h
The wave-pressure, vt (z) , for = < D is then:

p (2) = p(z) -y « (D~ z)
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POINT OF INFLECTION AND MEAN WATER LEVEL

The complementary modulus, kc is defined asc:

k= k2
C

The point of inflection is got from (18") for

0
S0 =0, with o = p_ ¢
v
AX
2 4 . (12 2 2 _
3 -k - oenve, - 2 (k= - k%) - cn b, ~ kK, =0
- /’ - 1)
v 31(2 (“) 3 B k2 7/ o kz

where the negative sign has to be omitted to get a positive
cmgev Prom the definition of the incomplete elliptic integral
of the first kind, P(¢,k),it is got,with @ denoting a

variable:

F(gbvk) :ll ’ / ’) =

The Jacobian elliptic cosine function, c¢n is then defined

as:

Prom (41" » ¢, 1s thereby got Dbys
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and then by (429

6, = Flo, k)
With =x = 0 at the crest the co-ordinates of the point of

inflection, (xv , ﬂv)3are then got from (13%, (12 and (47):

2
(Xv g ﬂv> = (2 TREY S 9y 0 ¢ !Int! + H - on ev) (47

The point of mean water level is found in a similar

manrier. In (129 n =0 for g = 6, so;

0
- {ﬂt!
CrL @O — mﬁ,&m
¢ = Arccos («onge )
0 ) 0

and ther

0, = F (¢, k) (44%

Like above the co-ordinates will bes

— L -]
(Ko 5 ﬂo) = <§WTWKT§T 0, o 0)

Il T‘bl

T r |
= (?‘—T—me ° FLAI’CCOS ,\/MT;I“—‘W 9 k]9 O) (453)
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ENERGY AND MOMENTUM

From Byrd and Friedman, reference [3], we get

> ko oo0 o+ 2

o (2 . K2 - 1) » B(¢ , k) = 2 . en 0 e cnof o dn G]

where, with @ denoting a variable:

¢
E(g, k) Zjﬁ'/T - kzginz@ d®
0

with o

is the incomplete elliptic integral of the second kind,
5 here chosen so

that T(¢, k) = a,

5 1o equivalent to 8 = F(g, k) = K(k)

and
E(¢, k) = B(k)., Hereby it is got:
K(k) )
f cn4o o dp = mmlmmﬁ o (2 - 3 . Kg) . k? o K(k)
LO - . k"' = £y

(46"
With the same symbolg there is got
2 2 P2
B(g, k) = kD -0+ k | on B o 4o (47
e
and for o = K(k) above,

charniging ® to § belows
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K(k) .
[ 2 ! 2L R(K)) (48"

Jo cnp o dp = E? - (BE(k) -~ k

The mean value of the potential emergy per horizontal unit

area, EpOJC , is, using (129, (46" and (48Y):

/2 /2
| Lf % . nz o dX = % o P ni o dx
0

Boot =177 ° Jo
/2 , /2
- % o 2 lntl okf H - Cﬁze o dX 4 % OLF H2 ° cn4e - dx
(¢] O
2 H " 2 7]
= o I A o n z o E(}{) - K 0 K(k) !
e [ >
+ - (2 -3 « k¥%) « k% « K(k)
g xR (x)
F2 (2 %22 1) . B (49)

Disregarding terms of 4th and higher order (2@) and

(30Y) gives

2

uz(z) + wg(z) _ 7 N n < D
C2 (D + n)Q 5 ¢« (D + n)
2 . amS 3% N D 2 2my% _ 2°07
i G - L] {22y R a2y
+ N X 3% (D " ﬂ) L + M oX 3%
R N B
o 4 (5X> J -
(D + n)

Por the kinetic energyv per horizontal unit area in a veriical

cut, AEkim(n) , 1t is then got:
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§:D + ﬂ 9 I’
- ] Yo, [4,2 ]
(M =) 70 F e [P @] e
2 2 2 2
_x- 0 [ U R T L (50
2 g D+ n 3 D+ n dx’ J
The mean value of the kinetic energy per horizontal unit
area, Ekin ig then
» L
R N N s
Brin = 1 Jo Aﬂkin(Q) ax (57)

which is found by numerical integration.
. . -~ ,th A , i b
Disregarding ferms of 4" and higher order, (299,

(40" and later (30" give:

[p(z,8) + vy = 2] - u(z) _ . (D+n) - D

vy - C f o
[ ™ (?«Il)Z S Do o G . D2
LD+ n X BXQJ 2 g (D + ﬂ)z
1 2 %1 o D
- m a-nj s et
[ D+ n (ax) K BX2J E {2 D+ n
2 2 -
2 QT 2 M 1 7 2 2
o | S ey -2 - s 0T . ]
[D + N X aXQJ 2 g (D + ﬂ>4
. Z 2 -
[m ! (éﬂ)é Laah . 2
D+ n ‘ox aXZJJ
5 .
(a°(a) 4w (2))  uls) o)
¢’ (D + n)-
] ”ﬂg - D [ 2 . (20 2 _ qu:j’l .\ [”?3)“ 1 D
- 2 2
[ 2 (éﬂ)g - BZHJ ,on- D% 20y 1. 2
D+ n ‘ax }:2 (D + 11)5 IS J
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The energy-filux, Evax(ﬂ) , per unit length of the wave~front
and per uwnit time through a vertical will, with the bottom,

z =0 , as referernice level, bhe

D +
[T

EfLUX(ﬂ> Jo

[p(z,8) + v« 24 e o (0°(2)

+ wg(z))j cu(z) « dz =y « 0« n e (D+ n)

3 - 2
N AUt N W . 02 . pe ., N . (3N
t g 0 C 5 =gz " ¢ <D 5 o (5%)
(D + m) (D + n)
0
S A1 BN - o DU Wkt .

The tramsported energy per wiit length of the wave~front,

Etrans“ is then found by numerical integration:
T

) = 4 ° I~ 3
By rans “J; Bflux(n) at (53"
Etraws 18 not dependernit on a refereiice level because:

Tp D+ n T
jxj u(z) - dz - 4t :Jﬁ Q « dt =0

0v0 o

The volume of the crest, or of the water above mean
water level, per unit width, A , is got by using (12, (13),

(44", (45) and (47):

N

=2 o gl s g Bt o (B(g, , K) - K2 - p) (54)
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The total horizontal momentum of the crest, per umit width,

T , is then by (22

fr

" A
[Ty . 4. :ggxqgafoa _X . a =
I, j: L E Q - dx -2 ), n oo dx 2 cC « A (55

o)

(The total horigomtal momeritum of the trough is the same),

A CONSIDERATION ON HIGHER ORDER TERMS

In the foregoing the phrase: "higher order term"

. . o Lrd ,
has heea used, where for instauce & 3 order term meent:

3
2N or 21 .29 or (%g) . Prom (8) there is got:

k dis close to 1 for any cnoidal wave here considered.
From (17, (18") and (1§§€%§ﬁ then be extracted the sizes
determining the maximum values of importance in comparison of
different orders:

an 5 JE
X D «%
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It 1s seen that the increase in derivation has to be 2 for
the increase in power of % to be 1. For % of more than
an insignificant size this yields a rather slow decrease of
importance of higher order terms. Of this reason it is
advisable to use basic hydrodynamic equations when
calculating a new important size in the wave (like in this
paper u(z) and p(z)) instead of just returning to some

previous equation from the development of the theory. It is

3 4
also seen that for instance (%%) ~ (%) . % , a
83 H
somewhat higher power than for «~% . But as T &rows
X
towards 1 an exact calculation of the maximum values will
3 3
show (Qﬂ) to be of the same size as éwg . And as it is
X 3%

the purpose to use this theory for waves of any non-breaking

. k| 3 . rd .
height (ax) must be taken along in a 3 order expression.,

TRANSITION FROM CNOIDAL TO SINUSOIDAL THEORY

It will now be shown, that for k - O the crnoidal
formulae will approach the usual sinusoidal formule.

The complete elliptic integrals, K(k) and

E(k) , can be expanded in powers of k ag:

2
k) =%« [14 () % 4 (p2p) - xt

© 2
(2 » m)! 2em 3
+ % ( , ) ok (56
m=3 (m!)° . 40
2 2 4
E(k):gapm(ﬁg)ok?n(g?él).%m
© 2 2°m
2°m)! ,
z (2 m) =) - ?T%m:“T] (57)

n=3 (m!)° . 4



Or K(k) and E(k) can be expanded in powers of k,

2 2
1
K(k) = Ln%+ (ﬁ) o (Ln%m - 1) - ki + (,2_,_?___2{)
C ke
G I S TS R S I E IR
1{0 2 ¢ 3 c mxB(m!)2°4m
o (1 & - 1 L2 °m
(Lﬂ«lg;»-ma 1'1«,(2«11«»-1}) k,
1 4 1 2 1,2 3
BE) =T4g s (g -g) -k + () -7
S S R S T A AR ¢ =) ) FIR
k 3°4 C “Z_: '2 m_']
° m=3 ((m - 1)1)% -« 4
-1
g c.m- 1 4 " 1
] - a(Ln_______ Z - e
k, nog & (2 e m = T3

From (&) it is got:

o
H- L

. K2 (k)

NI
m A

2

This is used in (7) together with %k = 0 and the first

term in (56") and (57);:

2

2
e 16, D° o K°(k) . . B(x) 2
e B 1 > (2 =3« gy - X9
~1.,.,A:.°TT2°D2
SRR I il
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as:

(58)

(59"

(60"
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This is the same expression as the first two terms in the

power expansion of the sinusoidal celerity:

2 2 -
2 - g ° L B 2 cTo° :D — 4 ° I ° D o 0 e
G = '?"-":m-ﬂ- tanh “wmf““mw = g - D o [1 e “3’ m-”'”'é’m“ -} _J

Prom (9") it is seen, that if T ig finite, then X - O
demands H - 0. The same is demanded of the wave-height in
the development of the sinusoidal theory,

Using the first two terms in (56" and (57) and

letting k -0 , N, in (10 changes to:

T . 1. %° 1xe - 1
I (1 - k))_H Tag o k5= 14
Ne =7 - -
k 3o (eg-xs) K (RIS
il
-l (62

The surface profile of the sinusoidal waves can be

written as:

B oo fzen. Goplo-Frn oo [n- G- ]

(67"

This is the same as got by (12) for k - O .
2
Regarding n and (%£> as comparatively small the

horizontal particle velocity from (2@) can be writtern as:

2 2 2
-~ D ., O g) (643)
X

u(z) =¢ » (4 - 222



With R = 2 ~I (63) gives:
>
>
wnaﬂoumg:R a'r]
X

Thereby (64") can be written as:

1 2 2 2

-0 . N 1, . -1 . e
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(65)

This 1s the same as yielded by the first two terms in the

power expansion of the sinusoidal expression:

2 . cosh(R ° z) N
wlz) = =52« ST c nxC - R .o
145« RS - 57 L

3 3 a2
Regarding n and (21)  ang 20 . 271
oxX o0X 3x
comparatively small the vertical particle velocity from

(30) can be written as:

a8

3 3
W(Z) = (0 - [_ z e (l ° éﬂ + % o 9 g) - 6Z’ D) s 9 ?]
oxX

- ézﬂ = g2 . 21
aXB X

whereby w(z) can be written as:

2 2 1

w(z) =¢ - &0 . % o (= 1 + % ¢« R7 ¢+ D7 - z R

X
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This is the same as yielded by the first two terms of the

power expanmsion of the sinusoidal expression:

A 4 e .?»II. 0 Sil’lh(R ; Z) 4 1 »@.:D. ~ @ a o
w(z) = T sinh(R - D) R =" C Sg
3 3
R~ z+ R7 e 3z N
§ s 2 C . 2 2 (m1 L. R% . D?
Re+D+¢ R -D
_ % R

2
Regarding n and (%g) as comparatively small and

02 = g ¢+ D the wave-pressure from (40") can be written as,

using (659

o+ " N 52 . 2 2
p(z) =y n+4 g (D~ 29
oX

This is the same as yietded by the first two terms in the

power expansion of the sinusoidal expression:

2 2

+( ) COSh(R ° Z) ! +% R
pAE) =7 0N g ; XY en
GoSH(R = D) SRRy

Sy oem e (1 - % o R o D2 + % o R2 e ZQ)
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For k - O the different terms in the potential energy

(49) will do as follows. Using (62) it is g0t

2
Ny gt
278
With ki =1 - %x° and using the first two terms in (56

and (5%) it 1s gots

>
Bk) - K2 - K@),
S H gl 2 . K(k) T

With ki =1 - k° and using the first 3 terms in (56" and

(57) it is gots

g2 (2-3 %) . K K(K) + 2 - (2 - K2 - 1) . B(k)
® x* . K (k)
- %@ . g

Hereby it is got as wanted:

Regarding mn as comparatively small the kinetic

energy can be expressed as, using AEkir(n) from (50%:
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The same is got from the sinusoidal expressions:

D
BBrin(n) =) g ¢ (5(a) + v(2)) + aa =

D
?“%;3 ° F c® . ! . [coshg(R o z) . RZ . ﬂg

Yo sinh2(R < D)
D oy 2 oy 2 ., 2
+ sinh“(R « z) o (BX) © Az = e 5 C™ = |R - n
2
cosh(R - D) R D 1. o(amy” . (cosh(R - D)
(sinh(R Dyt Sinhz(R . D) t g (a ) (éiﬁﬁiﬁ.!“b)

R - D I 2

2 2
~ ——.-u:am ¢ + et g D ° ( )

5

where the hypefbolic terms were expanded as follows:

cosh(R - D) _ 1 . 1, 2 , 2
simn(r > ) = ®m~>p (1 +35 - R - DY)
1 1 1 2 2
2 = v (1 - 5 « R® . D7)

sizh®(R « D)  R° - D

2
Regarding n and (%%) as comparatively small and

2

C™ =g « D the eiergy-flux (5?) can be written as,

using (65):

The same is got from the sinusoidal expression using
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D -
p 2 1
EfLuX(ﬂ) :j; [P(Z) + y(z) +'§m¥~§ o (u(z) + wg(z))J
2D
Y oA - | . cosh(R » =z)
ulz) dz _Jo [Y D+ y cosh(R - D)
+ §M¥w§ . o8 21 o (R2 o na . coshg(R © z)
: sinh™(R « D)
(2N PR~ 1 . cosh(R » z)
-4 (BX) Ollih (R Z))—l C R 'ﬂ S_iﬁh(R " :-D) dZ
=y « C me D+ vy O n2 -k y » C n2 o R2 o D2
3 3
$ ot e 0”0 Oy
&) D
THE SOLITARY WAVE
— Ay —
T ! [
D
SIS S S S ////i// /S S S Y4
Fig.2., Definition sketch. Solitary wave., Undistorted.

H/D

0.6



The solitary wave can be found from

7971
eq. 35 Dby

demanding n > O. But the same solution will be got from

the cnoidal wave by letting

and for g >

k - 1. As wanted (8) then,

7 O only themn, gives:
L _ 4 n ( )
—— mh;a-u_a— 0 Mo o :K ° I{ k) - 0o (66)
VR
(7) and (10") give
2
C _ H
g - D T+ ']‘j (6%)
_ Vi
n, =B (68"
Usiing 2 OLK(k) from (8\) in (13)) we get
- / """""
3 H , . :
6 = ?44"ﬁ : Yﬁ « (x = C o t) (69"
and the surface profile of (12Y):
n = LN Sechze (70"
cosh™ @

The derivatives of (70) are

the same as (17), (18" and (19)

would give by k = 1:
- H ém imh o -
-g--;% I e ,JB ° —Inj- 3 -’\/uﬁ ?.«.J;Jlm—u@w (ZTD)
cosh”g
2 2
3 H 2
SFemg sy (e - ) (72)
X D cosh o cosh g
3 2 - . . .
...... H I "z 'I. .
o g =% < ./3 = - V% . (2 Slgﬂ 9 81nh39) (73"
_AX D cosh™ 0 cosh” 8
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Using (70, (71, (72 aund (73) the particle velocities and

accel erations and the pressure are again found from (29) +to

(40" . The point of inflection is foumd from (72) with

2
ﬁmg = 0:
OX
cosh®py = 2 74,
cosh GV =5 ( ‘4‘)

A ~2°Do'@e1,n“~/—~»««5f_1 (75

n ﬁjg":“l = 0,6585 5_% (76"
(74 in (70" gives:

2 . .
ng =% ¢ H (77

The horizontal distarice from the crest to the point of
inflection, AV , i the dyriamically important length
in the solitary and cnoidal waves aund not the wave~length,

or the distance from the crest to the mean water level.

Some co-ordinates (x - ¢ « t, mn) of the surface are:

1 2 Y an T
(2 sy o s 5y (3 hg 5y H) and (40 0y, g5 - H)

The total potential energy, EpOJG per unit width

will be, using (69) and (70%:
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i 2 . 2D . .2 7 _ag
E — P ..X rﬂ d_.X: - ,}/ o @ \/“,.. o H
pot meg V@n H ' Jo cosh g
= “gff_ ° 'Y TI o :D ¢ \/I-I D ° [% g tallh e ( 1 ‘) T 1 >]
J3 2 cosh“g
= 4 pe G 4 H+D«vH « D
3« /3

This is the same value as would be obtained from (4@)9

Using (75") and (76") E ; can be written as:

po
2 ° A
Y eyl Y 2y 2

i Afév-a«-w“ 1

J2

which yields, that the total potential energy of the solitary

wave 1s the same as that of a rectangular mass of water of
height H , placed between the two points of inflection.

The kinetic erergy, AR ;, will be the same as in

kin
(50). To calculate (51" are needed some integrals. a is a

constant, ® and o are variables:

i

f 1 ?°d®: 1~ ~~~~~~~~ °Lﬁ“/_1_:f_'_+®
1+ a8 - 67 2 - /T + a J1T + a - 0
K 2
J o 2»@@:-«@+(1+a)ef ! 5+ 40
T 4 a - @ vl +a -6
;;4 H3 H2
Jﬂ e 5 - ag = - %w + (1 + a) eLr 9 ol ae
1T 4+ a -~ @6 T4+ a - 8
4 =
[7 se Ch e 2 . d O - JP 1 - ‘tarllh e § R d J[Ja?’lh e
Y g 4+ sech 8 a + T - tanh™o

sech49 . tarbge (1 - tanhzq) o taﬁhga
r L « dp :Lf : ~ e NG I vF= W o N AR

a -+ secth a+ 1 = tanhze
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The total kinetic energy, Ekin , per unit width will then

be, using (509, (69, (70" and (71):

2 2 o 2
pore X c. . 1 (20 ax
5 e g Jo D+ 1 X
oy 02 - 0,2 D . «/2 . © sech49 . do
- & =3 H D 2 ’
i 3 o # + sechTo
L 02 0 H2 L2 /ZD j‘ sech40 o ta,ﬁh29 . dp
= 2
& «/—3‘ ﬁ + sech @
D
s} P
-2 1. ¢ - ED - D [tmhe_— H
/3 ’ | 2 41+ 2
e H
/1 + -I]—?I' + tanh 91“ -1 3 D
Ihe) T + H - L%« tanh”’ g6 + T barih 0
N/1 g tarh 670
- M_WE_,
V1 = tarih o
Y A IR S i
2H ] Y 1J
UM T tanh 9
[ D
=2 < X.c¢®-WE.D - {D - H/
/3 ’ 2 v %
VT 4+ % + 1 )
H ] 1 D D
11 /.M_MB ..J + H ]:':7)" -+ '-‘E e Tj‘“ﬁ:
T + ‘ﬁ' -
- wwmﬂ
'\/1 + o o T4
Y g - N (79)
NT o+ T_-I' e ]

Al

As could be expected ka > Epot



The volume per unit width of the wave, A , isy

using (69) and (70):

@ 2.0 . .0 ® 40
.A, = r /n ° dX = 2 o e @ Af e ° :H: oj
o A/B q o cosh™g
foad né‘mm:mmgz ° "\/H o D ( 80‘))

The total horizontal momentum is then, using (22%:

— F ” Iy o o = "X ° Fm ¢
Ifr B J‘_.oo g Q dx = g ¢ ‘-Jmoo " o
- -4*:: ° ”X e C o D - '\/H « D
S8

COMPARISON OF THEORY WITH MODEL TESTS

The profile and celerity of the solitary wave as
givea by (70" and (67) has been verified by several
investigators. As the solitary wave and the sinusoidal
wave are the extremes of the cuoidal wave there are good

reasons to accept the crioidal expressions from (7% to (1%).
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Pig.5. Comparisown of theory with model tests for the
maximum values of particle velocities, U
horizontal and W vertical. Experiments from
Mehauté et al. , reference [13]

The mew expressions for particle velocities (29
and (30") have been compared to tests in 18], and here is
shown the best and the poorest result. For comparison with
other theories see [13].

As a further control of the velocity expression
the Bermoulll equation can he used on the free surface,
For sinusoidal waves this gives the wanted proof. For the

other extreme, the solitary wave, we get

2

2« C - U Utop

top = ng oH

where U is the particle velocity at the surface of

top
the crest. This gives a maximum disagreement of 7% (for

H/D = 0.8),
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APPLICATION OF THE GRAPHS AND THE CHOICE BETWEEN THEORIES

0f technical reasons there are used only capital letters in
the latin alphabet on the computer drawn graphs, so that for instan-
ce the parameter log kc is written LOG KCo The different symbols
are explained in the NOTATION. Note that for the acceleration term
1 metre/second2 there is written only: 1. For the particle velocities
and the pressure the formule must be used with the necessary sizes
found from the graphs. When there is a deviation between the back-
ground millimeter net and the computer drawn marks, the computer marks
should of course be used.

When getting outside of the cnoidal graphs because - log k

C

gets too great, the graphs for the solitary wave should be used., Or

if greater accuracy is wanted, the formuls can be used with: k = 1,
E(k) = 1, K(k) = 1n% (see (58 and (59)), and cn 6 = cosh Q.
c

At the other extreme the sinusoidal waves should be used,

The celerity, Csine according to the Stokes’ ginusoidal theory of

first and second order is:

g Lsine

2 ¢ m D
sine ! 2 T tanh ( . )
sine
Csine is also plotted out, and it is proposed to use cnoidal expres-
sions when C .2 C . o In this way there is got a continuous
cnoi sine

transition between the two theories for C and L for given con-
tinuous T and D. For Yk a discontinuous transition is got, but
the discontinuity is of no more than 23 % (for H/D = 0.9). The
cnoidal value of Qc in the transition lies between the values of the
first and second order Stokes’ theory and it is reasonable only for
small values of H/D (~o0,1) to use the second order theory for bet-

ter transition,
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GRAPH 7. Solitary wave. As functious of the wave-height and
mean water depth: celerity, kinetic and potential
energy, wave volume, and distarice from the crest to
the point of inflection.
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NOTATION

a counstant.

Jacoblan elliptic cosine function.

When F (¢,k) =0 then cn g = cos ¢.

For k¥ =0 : cn = cos, For k =1 cr = gech,
hyperbolic cosiue,

dJacoblian elliptic function. dn2 = k2 + kT cn2
acceleration of gravity.

modgLus ip the elliptic functions.

J

=41 - k2 , complementary modulus,

natural logarithm, base e = 2,71828,

commoni logarithm, base 10,

positive integers.

total unit pressure (above atmospheric pressure)
at an arbitrary point, (x, =z, t).

wave pressure, = p(z) minus hydrostatic pressure.

1
cosh

hyperbolic gine.

Jacobian elliptic sine function.

When. F (¢,k) = 0 then su 0 = sin o,

For k =0 sn = gin, For k = 1 : sn = tanh,
time.

hyperbolic tangent.

horizontal particle velocity at am abitrary point
(x, z, 1),

u(z) at the bottom, 2z = 0.

u(z) at the surface, z =D + n.
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vertical particle velocity at an arbitrary point
(x, z, t).

w(z) at the surface, =z =D + n.

horizontal co~ordinate.

vertical co-ordinsate.

volume per unit width of the crest, or the water
above mean water level.

the inverse cosine.

1(n)9 Bg(n), BB(n> constants depending om n.

wave-celerity.

C for crnoidal waves in comparison of theories,
C for sinusoidal waves.

mean water depth.

complete elliptic integral of the second kind.

:f(b D1 - %2+ 5in0 « 4o is the imcomplete

! gi S _ plete
eL%iptio integral of the second kind.
D (121 k) = E(k),
(ox EKIN>’ meari value of the kinetic eiiergy. For
the cnoidal wave: per horigontal unit area. For
the solitary wave: per unit width for the whole
wave,
(or EPOT)9 potential ernergy. Units as for Bip,
(or ETRANS)9 transported einergv, or the energy
flux over a wave-period, per unit width.
ennergy flux through a vertical of unit width

at mn.
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¢
= = , the incomplete elliptic

—J
© J1 - %% . 5ine

integral of the first kind. F (& ,k) = K(k).

o

particle acceleration (vertical) at the free

surface of the crest 2z =D + Ne o

wave~helght.,

horizontal momentum per unit width of the whole crest.
complete elliptic imtegral of the first kind.
wave-length,

sliusoldal wave~length.,

wave pressure below the crest at the bottom, 2z = 0.

water discharge through a vertical.
2 o oq
L °

wave-period.,

horizontal particle velocity below the crest.
U at the bottom, =z = 0.
U at the free surface, 2z =D + Ng
1 , vt w -
w(z) Dbelow the point where W Woax

vertical particle velocity, where it is greatest

(at the free surface z =D + 1 and Xw)o

urtit welght of the water.

elevation of the free surface.

n  for the crest, crest height.

n  for the trough, trough height (negative).

n  for the point of inflection.

=0 , mn for the point on mean water level.
X t

2« K(k) . ¥ - T> for the crioidal wave, and

li

= ﬁizmﬁ o J% - (x - C - t) for the solitary wave.

el ¢
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QV 6 fLfor the point of inflection.
eo 8 for the point om mean water level.
XV horizontal distance between the crest and the

point of inflection.

XW horigzorital distarce between the crest and the
point with Wmax o
Ko horizontal distarnce between the crest and the poirnt

onn mearn water level,

vl a variable,
m = 5,14159265,
0 the velocity potential at an arbitrary point
(x, z, t).
©q ow at the bottom 2z = O,
o the amplitude in elliptic integrals and functions.
- ¢ for the point of inflection.
¢o ¢ Tor the point on mean water level.

AEkiﬂ(ﬂ)kinetic eriergy per horizoutal unit area.
® a variable,
1 in the dimensionless expressions on the graphs

. 2
1 means the acceleration 1 metre/(second)”,
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SIMPLIFIED EXPRESSION FOR THE TRANSPORTED ENERGY ?
After the appearance of the expression for the energy flux of

this chapter; Svendsen succeeded in finding the more gimple expression

Beiux = ?g Cyzg (A1)

ovendsen useg a coordinate system that originates at the mean water
level instead of at the bottom which leaveg out a term as ¥ C ? D

from & the term that will be zero by integration over a period

flux?

to find the transported energy, Etrans° As mentioned, Etrans

independent of where we have 2z = 0. 50 eq. Al is the same as the

is

first and the most important term in the expression for Eflux of

this chapter, eq. 52.

The transported energy is, using eq. Al,

T T 5 L 5
By ons = g Brpyg 47 = gg& Q c dt = ggg Fz dx (A2)
o o o
The potential energy is
L
1 2
EpoJC =5 goyz dx (A3)
So we see from eq. A1 and A3 that
Etrans =z Epot (44)

This expregsion agrees with the classical engineering consider-
ations on shallow water wavegt: The limit of cnoidal waves is the sgoli-
tary wave. When the water before and after the passage of the wave
is calm and with the same depth, all the energy must accompany the
wave, The energy of the wave is partly potential, partly kinetic, so

Etrans - Epot * Ekin (45)

From the first order theory it is known that

E. =8 (A6)

50 eq. A5 gives

Etrans = Epot (A7)

the same as eq. A4,
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Eg. A7 has also been used in practice in the need of a better expres-
gion for the transported energy of cnoidal waves.

Svendsen’s expression for E in eq. A1 is seen to be a

little different from the expressioilg§ this chapter. So it is the
question 1f it is possible in two different ways to reach two differ-
ent, but correct results. Because then the more simple expression of
eq. A1 will be preferable, also because 1t is exactly the same as
given by the ginusoidal theory.

Comparing eq. Al with eq. 521t is seen that Svendsen apparent-
ly has neglected terms of third order magnitude., As 1t is clear to see
from e.g. eq. A3, the energy of a first order wave is of second order,
and the energy of a second order wave must then include third order
terms. So if there during the development of eq. Al will be terms of
third order magnitude they must be included.

So let us congider the development as given by Svendsen in

ref [ 21 1. We will use the same notation as there.

The energy flux is defined in eq. 5.1 =3 in [ 21]

1
Ef =jh?u{p+/§ + 32— (u2 + V2>} dy (A8)
where u is given by 3.3 - 16 [21 ]
° (

. 2 Pt
u = C g -c E% +=c¢h (% - “1—ﬁ§£l~)yzxx~ c g + 0(§

6
) (49)
Here Q is measured from the mean energy level, instead of the mean

water level, but with eq. 3.3 - 12 [ 21 ]

Q—= izM + q, (A10)
and eq. 3.3 - 13 [21] it is seen that u can be written without the
term o

cg (411)

if ? is measured from the mean water level, what we then will do.
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v has a magnitude so it is without importance in eq. A8.

p¥ is given by eq. 3.6 - 10 [21]
¥ 1.2 (v + n)° 6
p' = g [} +5h (1=~ 1+ 0 (&) (a12)
Then we get for the energy flux
1. n n* 1 1 (y+h)
%thfh-gzz*gh(; ) N
2
1.2 (y + h) 1 2 2
{g [Ez * 5 h® (1 - -z )VZXX] + 3 [ ¢ (%) + ~~]}$5(A13)
In the lagt term we use 62 = gh, neglecting higher order terms, so

o [Hfe M- & e Fenn( - Cgelon

-+

3
-;-ghVZU —LT——J“h M e * gg%}dy
> 3 ; >
§e C]?{g -3 3 "”2{37 - 1:2}1) ”l;;;;}

h 2 h?

i

e

i}

3 3
?go[VZ2+Q —%Q hVZVZXX (A14)
So if we use the same principles as otherwise used in [ 21 ] we flnd

for the cnoidal wave, which is one order higher than the sinusoidal

wave, that the energy flux of ref.[ 2] should have been

2 I -
%::ggc? +-§go[zg§+§}1qqxg (A15)
If the same principles of neglecting terms and the same reference
level ig used on eq. 52’it will be exactly the same as eq. Al15,
There is one disputed term in eq. 52
- EYgCB p° & ?VZ iz (%V)X (A16)
After both the principles of this chapter and of ref [21 1, this

term can be neglected as being of higher order than the included third
order terms (after shallow water considerations). But it can never
be wrong to include a higher order negligible term as long as the ex-

pression for E will not be claimed to be of higher order,

flux
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But there is a reason not to drop it, if not wanted. It is seen that
according to the principles for waves on arbitrary depth the magnitude
of eq. A16 ig the same as for the terms included (of third order),
S0 the term can as well be included having the sinusoidal limit in
mind,

Even though the energy flux in ref [21 1 is not correct for
a cnoidal wave, it could be so lucky that the expression for the

transported energy by integration of E happened to be correct.

flux
One of the forgotten terms in E will not contribute to E .
flux trans
but the other will.
So the classical expression of eq. A4 is not fully sufficient

for a cnoidal wave,

SELES SIS S S ST

Fig. Al. The transported energy for a shallow water cnoidal
wave 1s not Jjust twice the potential energy.
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NUMERICAL EXANMPLE

Let us consider the wave with the period T = 10 sec, which

on infinite deep water has the wave height HO = 3m. We then find

L, = 156 m c, = 15.6 m/sec

1 2

1 2
Etrans =76 Ho Lo =6 ¥ 37156 = 88 v

We then want to find the wave heightH for the same wave when it has
reached the depth of D = 5 m. We get

T VT;D = 10 l1;5 = 4«5

(1 18 1 m/secz). Then we can draw a line through T V170 = 4.5 on

graph 6 (and the other graphs) as shown on fig A2,

Fig. A2, Determination of the wave height.

Part of graph 6.
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We get

E E
trans B trans B 88 0,157
vy T HAVT<D = (H/DP yTD*YT+D - (H/D)Y* 10-5%2 V5 -~ (H/D)}

By trial and error we then in two steps find

trans
H/D = 0.75 for TT RyET - 0.276

This gives H = 3.7 m, while the sinusoidal theory would give

H= 3.3 m

T y1/D = 4.5 and H/D = 0,75 is then used on the other graphs, e.g.
graph 3 which gives

c / VT'D = 3.68 or c = 8.2 m/sec
log kc = - 2,1

The wave length is then found from graph 4 and the wave pro-
file from graph 1.

A more relevant depth may be D = 1o m, which gives
TV 1/D = 3.2, But then we see that we get outside the region of
shallow water cnoidal waves. For higher waves with this D and T
it is also not possible to use the Stokes® waves. But then the cnoi-

dal waves of chapter IX can be used.




	NMJthesis 1
	NMJthesis 10
	NMJthesis 11
	NMJthesis 12
	NMJthesis 13
	NMJthesis 14
	NMJthesis 15
	NMJthesis 16
	NMJthesis 17
	NMJthesis 18
	NMJthesis 19
	NMJthesis 2
	NMJthesis 20
	NMJthesis 21
	NMJthesis 22
	NMJthesis 23
	NMJthesis 3
	NMJthesis 4
	NMJthesis 5
	NMJthesis 6
	NMJthesis 7
	NMJthesis 8
	NMJthesis 9

