CHAPTER VI ‘ 100

PROGRESSIVE CNOIDAL DEEP WATER WAVES

ABSTRACTS

The purpose of this chapter is to give the solutions for regu-
lar yprogressive finlite amplitude waves on infinite deep water. Diffe-
rent wave solutions of second order are given and the most satisfac-
tory is found to be the cnoidal solution., The wave profile is then
described 1a a way similar to that for the traditional shallow water
cnoldal waves, hence the name ’cnoidal’. It is tried to find the so-
lution in a rather simple physical way. The expressions for veloci-
ties and pressure are found to be rather simple. Further igs shown

how rotation can be included.

INTRODUCTION

In chapter II we considered the first order progressive deep
water wave., We then started to neglect higher order terms already
for the vertical velocity (eq. 17). We saw though, (eq. 16), that
this could mean, that we would have to demand the wave steepness,
H/L, rather small for the dropped terms to be negligible. So this
time we include higher order terms. Until the wave equation we take
all terms along, so that we can assure the quantity of approximations
in the final solutions,.

This chapter 1s written so that it in principle can be read
independant of chapter IT or any other chapters., It could be made
only a few lines shorter by connecting it to chapter II, bubt it is
found more convenient for the reader to ’stay within® this chapter,
So a few sentences and equations are repeated here,

The idea of why and how to find e.g. cnoidal waves alsc for
deep water is shown in an appendix in an attempt to make the direct
developement of the wave more short., It is then understood that a
cnoidal solution must exist, although 1t mathematically may not be so
obvious a solution out from consideratiohs of second order sinusoidal

solutions,

BASIC EQUATIONS
We consider a two-dimensional, progressive gravity wave of

permanent form on infinite depth, as indicated in fig. 1.
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Fig. 1. Definition sketch
The equation of continuilty reads
g _ _2n (1)

% ot

in which g = ¢g(x,t) is the discharge through a vertical, t
the time, ¢ the wave celerity and n = n(x,t) is the surface
elevation. Ag further for a permanent wave

_on - on :

it is seen that for a wave without a resultant discharge

q = ©n )

To make the following deductions more simple, we assume

the vertical distribution of the horizontal particle velocity

to be exponential for infinitely deep water, so that u=u(x,z,t)

R(z -N) :/crzReR(Z*Q) (4)

This can be felt rather as a restrictive assumption.
Instead, we might have assumed the distribution to be some
unknown function, but, in practice, eg. 4 does not imply any
serious restriction, because we might t?ink ?f u as a series

R,(z~-n

+ , of which eq.4 is

of exponential functions, u = 2q,R.e
the first term. Finally, it then turns out that the single

term in eqg. 4 satisfies the final solution of both first and
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second order with Rum%§ L being the wave length. For third
order and higher order waves, u will contain several exponen-
tial functions with different R values, but this is just what
comes out automatically of a perturbation theoxy based on

only eqg. 4 with unknown R. The exponential form has, of course,
been chosen because it is known to agree with experiments. It

is also known that eg. 4 is in accordance with the clagsical

first order potential theory when R = %ﬂa
Using the equation of continuity
dw o _3u
02 ox’

and w=0 for z-+=-, we get the vertical particle velocity,

w o= wix,z,t)

w = cl§k e ndprle T )

From egs. 4 and 5 we get the horizontal particle acce-

leration Gx = Gx(xngt)

(_.
Gy =94 =244 yShew it =c 2R 1 n2RY e* =T (6)

The vertical particle acceleration, G7 s G?(xrzpt)g will

be
dw Ave Jo) o —
o= 8 = 3T v BB -
a o4 J R(z~
{[TQ (23 n SRR YR € K
Y A O?n 2] 2R (Z2-1)
8- ngarepgaee* = o
Through the vertical dynamic equation for a frictionless
£fluid

- 9P _ -
Wy T Pg PG,
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and p=0 at the surface z =71, we get an expression for the
pressure, p=p(x,z,t). g is the acceleration of gravity and
p is the density of the water. By differentiation,we derive

an expression for~igg Through the horizontal dynamic equation,
P 5% C Y q

)
5% = PGy

. . . . ) s . 0
we obtain an alternative expression for §§@ Eliminating ﬁ%

from the two eguations we get the wave equation

on a_%iu_eR(Z~V()]_§gReR<z~fz)

03TR L 12 SR sy R "7

FIRST ORDER SOLUTION

The terms in qu 8 are of different order of m@qnitud@@
for instance %% and %§% are small of first order, n%§% of
gsecond order etc.

Comparison of the magnitude of the different terms can
be made when we have a solution to n and given wave parameters,

see the appendix.
If we keep only the first order terms and regard the
others as negligible, we get the first order wave equation

g0y g1y oREN]_ Qemz (A

cZox T ox® R (9)
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This equation is split into two equations that must be

fulfilled simultaneously, an equation of the z-dependent terms

3 _ R(z-~
201 gRE | et L g 10y

and an equation of the z-independent terms
3 °n |
g, 225 -0 (11)
2 ox  Ox* R
The solution of these two equations is the wellknown

first order wave

n=n=4coskk-ct) ; R=k=2T C=\g=€1ﬂ (12)

where H is the wave height.

Before we proceed to the higher order solutions of the
wave equation, it may be of interest to compare the magnitude
of second order terms in eq. 8 with that of first order terms,

for instance,
_sond% /g2
€5§2ax2 2752
An approximate evaluation of this ratio can be obtained

by insertion of the first order solution, eg. 12, and we find

that it becomes
6T+ cos koc-ct)

From this it is seen that H/L must then be unrealistical-
ly small for this second order term to be negligible. Hence
it would be of interest to develop a more satisfactory theo-

ry, as attempted in the following sections.

SECOND ORDER PERTURBATION SOLUTION

In the wave equation, eqg. 8, we now retain the terms
of first and second orders and neglect higher order terms.
In all second order terms, the first order solution, eg. 12,
has been inserted to give us the following second order wave

egquation:
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g o % 1[4 oREZ-M]_ N R(z-1)
EﬁgnggigR[1 c } 5Kf?6

I

3(§)Zkgsm 2kex-ct) [1-ek ] (13)

~ As for the first order wave equation, we could solve
eg. 13 by splitting it into a z-dependent and a z-independent
eguation.,
However, it is an eagier procedure to put z = 1n in eq.

13, which gives

C:\r"g’: (14)

Then we only need to satisfy the z-dependent equation,
21

which giveg R = k = ﬁfpand then we get the solution
2
Q:mmzngcos k(x-ct) +(’g) §COSZ/<(><~U) (15)

(In water of finite depth, there would also be a sec-
ond order term Nop, with R = 2k).

The solution, eqg. 15, is reasonable for deep water
waves. But in other cases, it is not reasonable to have a so=
lution with a second order wave on top of a first order wave.
We will then introduce a solution where the sinusoidal wave
has been deformed by a second order correction term in the
argument of the cosine function. It is then possible to in-
dicate an alternative solution of the z-dependent equation

from eg. 13:

n= g-cos(/r(x%t)-—%x@) + A (16)

Within the frames of a second order theory, we can sub-
. . . o on . . .
stitute the first order expression for W% in this equation,

80 that we can write

Oz%COS@+AD ;0= kx-ct)+HksinG (17)

This solution can be shown to be correct also for the
third order.
AD is found by integrating eq. 16 and demanding the

mean water level to occur at z = 0, so for a second (and third)
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K(HI2 _ THH
s0=53 =502 te

A systematic way to find wave solutions like edq. 16
has been suggested by the author (Mejlhede 1975). See also
the appendix.

The solutions, egs. 15, 16, and 17, show that a second
order wave can be many things. They all fulfil the wave equa-
tion, eq. 8, to the same degree of approximation. But they
give different surface profiles, although this difference in
the case of deep water is very small.

We then want the solution that comes closest to reality.
In the case of shallow water, the cnoidal wave has proved its
good value, so we will turn our attention to a similar deep

water solution.

CNOIDAL DEEP WATRER WAVE

Another second order solution is the cnoidal wave. In
the wave equation, eg. 8, we now consider the third and fouxrth
order terms as negligible.

However, this time we do not substitute the first oxr-
der solution n, from eg. 12 into the second order terms as
we did in deriving eq. 13. We only approximate some of the
second order terms in view of the first order solution. For
instance, with n = %cxmﬂcupwct)gwe have

a2 2
o = K
so that in eg. 8 we can make the substitution

3,

30 2% _ 3% 2, %0 _Ondf
"a—ffa—[%”?% / “‘“’?&QR = N3x3 = Bx oxt

See the appendix for further explanation.

BEg. 8 will then reduce to

gon Ot R(z-n))_ D R(z-N)
S5k - sdgl1-e"* - g Re

-6 N $p[1-e =] =0 (19

As in eq. 14, we get the celerity by substitution of

the surface, 2z = 1n
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After divigion by e the z-dependent equation

from eg. 19 is
3
/. —QR (_Z_YZ) /79;’2:0 (20)
Ox 3 L 0X
We shall now show that the solution of this equation

n=H cn? &8~ ct)+ . (21)

where Ny is the negative trough depth, which, as in the shal-
low water cnoidal wave theory, is found from the definition

of the mean water level by the integration

fOL7d>< =0

so that
2 = (1=m=5) 22

K = K(mn) and E = E(m) are the complete elliptic in-
tegrals of first and second kind, cn is the Jacobian ellip-
tic cosine function, and m is the parameter = the square of
the modulus.

For the sinusoidal approximation m -+ 0, we get nt»m~%a

The derivatives of g : B?/BX, 627/BX2, and 63?/bx3 are given
in chapter VIII, where also eq. 22 and the sinusoidal limits are
given,

By differentilation, eq. 21 gives

gxz :Z 16K[7 ~2m+3mentSik-ct)| o3

This expression is inserted in eg. 20. In the second

order term of eqg. 20, we substitute n by eg. 21 with ntm“m%s
We then get

_;?_Q LK[1~ 2+ 3m cn? 8(x~ Cf)J

12902 + 621)"8 jent c-ct) =)0 0

This equation is split into two equations, one depend-

ing on the cn—terms and the other on the other terms. The cn-

dependent equation gives the condition




H
mK2=m>] (25)
from which m and thereby K(m) are determined by the wave

steepness H/L. The cn-independent equation gives with eqg. 25

For H/L = 0, we get the classical result R = 2nv/L. For
H/L near the maximum practical value, R is only a few per cent
from 2nw/L (the deviation is small compared to the neglected
higher order terms), so that, for most practical purposes,
we can use R = k = 27/L corresponding to the sinusoidal sec-

ond order wave, eg. 15,

ROTATION

So far, we have made no assumptions about the rotation,
we have only used the equation of continuity and momentum.
The rotation can then be calculated for the solutions we have
obtained till now. We then find that the rotation in the first
order wave i zéro as in the classical first order Aliry wave.

' The rotation for the second order sinusoidal waves is
found by egs. 4, 5 and 15, 16 or 17 with R = k = 2n/L to be

_du_dw _ _(H? 131 kiz-n) (27)
2=54- 9o (2)<:/<26 7

The rotation for the cnoidal wave is a little more com-
plicated to evaluate, but with approximations we get the same
expression as in eq. 27, as a correct second order value.

The rotation in eqg. 27 is not in accordance with the
classical Stokes' second order theory, which assumes irrota-—
tional flow. Hence we would like to be able to change Q in
eg. 28 to any small arbitrary value.

This can be done by changing the velocity in eg. 4 to

?

Myop= € K€ ETD + dc(z’i)zkzek‘2“7’+c{§)zF(z) (28)

The constant § and the function F(z) must be chosen so

that the last two terms are of second order.
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If we want the wave to be without a net flow, we only
need to include the proper arbitrary constant in P (z).
The second order rotation in eq. 27 is then changed to

0 =(§4)ch3@"(2”7)[5~%]+ c(gf gg(z (29)

so that for § = % and F(z) = 0, we get irrotational waves.

When using gmﬁ;from eg. 28 instead of u from eq. 4,
we see that the second order expressions for w, Gy, and GZ in
egs. 5, 6 and 7 are unchanged, so that the second order wave
equation in eqg. 8 is unchanged. This means that our second
order wave solutions are unaffected by second order rotation
except for the horizontal particle velocity, which is in agree-

ment with the work of others on rotational waves.

ROTATIONAL WAVES

As an example of how to use the theory in this paper
to find waves with arbitrary rotation, we consider a second
order wave with a first order rotation. In the appendix, the
problem of a second order wave on a specific exponential first
order shear flow has been solved. We will here consider a more

general shear flow, writing for u
/{/L::COQGQ(Z~7J+C§RZCSL‘WL'emik(ZhQ) (30)

where di and n, are freely chosen constants, so that the last
term in eq. 30 is kept as a first order quantity. We then get

the solution for the surface profile

= . : 31
l? Oi+02a+2(72u_ +72dc) (31)
where 1, and Ny, are known from egs. 12 and 15. We get N9ai
and Nodji from egs. 41 and 42 in the appendix

Naci =(Zﬂ)2/<CSL~VUL-COSk(X~d) with R=n K (32)

2 2
Noui =~(2) k&ﬁ@i_z- cos kfc-ct) with R=(+lk (33)

We get the celerity from eqg. 44

c:\/g[7+ﬁk2%] e
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By selecting the right combinations of Siniy we can

describe most of the practically important rotations of first

order and find their effect on a second order wave as far

as profile, celerity, kinematics and dynamics are concerned.

The same procedure can be used to study the effect of rota-

tion on higher order waves.

Fig.

MEAN WATER
LEVEL

2. Cnoidal deep water wave compared to the first or-

dey wave for H/L = 10%. The second order waves in
egs. 16 and 17 will give the same profile. The per-
turbation solution from eq. 15 will be only slight-
ly different.
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APPENDIX I

SOLUTION OF A SECOND ORDER WAVE WITH FIRST ORDER ROTATION

We will here develop a description of a wave propagating
on a specific shear flow. We write the horizontal particle
velocity as

= Ch) R@Q(Z-W“"Cf/r[/k@nk@“?}

/w/k(z—-‘?)

:44+cgmk@ (35)

where u is the usual value from eqg. 4. The equation of con-

tinuity gives wi as by eq. 5
w1=w+c—2/i§—§—m/k€nk(z'?) (36)
As before, we get the horizontal particle acceleration
Gy = G+ 0?2 A k) €™ =
R -nk)nk eFfrRE=7) (37)

and the vertical particle acceleration

Gy =Gy "3 56% k[ KE D GRRED] e

By substitution of the first order solution, eqg. 12,
into the second order terms we get the complete second order

wave equation

4_(1 '"VZ./>[/2/ e(n/'f”k(Z*VZ) 4+ [1_ GWR(Z—VZ)J

-+

n‘/}:j H—@WUR(Z_Q) H (39)
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This equation has a solution of the form

= VZN‘QZ@*?&*@M (40)

where n, is given by eq. 12 and UPY by eg. 15. Ny, and Nog
are the solutions to the new terms. Considering the terms
with eR(ZMn) on the left side and en]{( )on the right gide,

we must demand R = nk and we get the solution
2
Nee :(g) nwk cos k(x-ct)  witn R=nk (41)

In the same way we obtain

Floot = "%/)Znﬁ’; k coskx-ct) with  R=(r+k (42)

Substitution of n, + P o4 U + Nog into the wave eqgua-
tion, eg. 39, gives after some calculation an equation for

the determination of the second order celerity
9 TH g - .—._(_H_zg' 1 A
|2z - k| Dk sinkc-et) =k Sinkic-ct2%  a3)

which gives

€= \ﬂ *HknﬁzJ (44)

. - -
h fust order rotation s Crot

Mm S@mmf e:;wf@%f“ wmm%mﬂ&é wave P
fﬁ y Fust order wave . g/f
L ;«» . . ; :rj.;fy .
- e N

Fig. 3. Second order wave with rotation of first order magnitude
(iee. a wave on a shear stream) has second order changes
in the surface profile and the celerity.
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THIRD ORDER SINUSOIDAL WAVE

In this appendix we will briefly give the third order sinusoidal
golution. It can be found in the same way as the sinusoidal second
order golution. In the wave equation, eq. 8, we substitute r&, eg. 124
into the third order terms, and IL and th, eq. 15, into the second
order terms. We then get a third order wave equation consisting of
terms with sin k (x - ¢t) or sin 3k (x - ct), and with ek(Z"?) or
e2k<z"7> or independent of z. From such a wave equation we make minor

. . kz . . 2kz
equations, one depending on e =, one depending on e , and one not

depending on z.

The final solution,that fulfils all the minor equations, is

=1+ N2a+Naa+Nac (45)

where n is from eq. , and n., n,_, and n are
h 2a i £ 15 d 1 38 d 3¢

, _-_%1(;08 K~-ct) (46)

03a=(—2'f)3—§— k*cos 3k(x-ct) with R =k= %_E (47)

(%) k [%—g] cos k(X-ct) with R=2k  (48)

For the wave height, the last three equations give
3,2
H= —Hw(ﬂ) k (7—3~—~§— (49)
27 2 \z 24 3
The celerity will be

/CrZOt = %“ t WZ(%)Z(BL+ g—d)] ( 50)

In the equations here we have included § 1ike 1in ed. 28, so

that the horizontal particle velocity is given as

Urot = ¢ N R eRE D+l K eh@D oy
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By thig we can change the rotation within second order magnitu-

de, so that we for & = % have ilrrotational waves, like described by
eq. 29, The irrotational third order celerity will then be
2z _ 9 2 i)’ (52)
Croteo = pLI*T il

We also see that rotation of thig type will make no changes in
the third order surface profile., Rotation will just ’move’ part of
the wave from ?3C(eq. 48) to P?_i(eq° 46), and they are both descri-
bed by cos k(x - ct). It gives a little change in the distribution
of the horizontal velocity, though, through the differences in R,

With different R values for different 52 solutions the full

expression for u in eq. 51 will be
Urot = (N + N2a T1aa) K ek Ez=1)
+C Nzer Lk @2 Q)*‘“(SC” KERETD o)

and correspondingly for w and p.
The solutions of this appendix can then be tested in the wave

equation, eq. 8, and seen to be a correct third order solution.

- 8 order
4 2' oroler

-{'order

7 f{:gf;é ok

[ /
C &
~
ey, ~
o v et i .
o,
S B,
%%“' Z%m:\”%%‘%
N e e
TR gy N A

ﬁQB.Q. The celerity of third order depends on the
wave height and on the rotation of second order.
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EXAMPLES OF ROTATIONAL WAVES

In eq. 30 we assume we have a shear stream of

= /C%k ekz=n) (54)

This means that 6 = 1 and n = 1, Egs. 31, 32, and 33 will then give

the surface elevation

=Nt 20t Noetau (55)

Noe =)'k cos kix—ct) with R=k (o6)
Nz =~(BF k4 cos kix-ct) with R=2k (57)

The celerity, eq. 34, will be

/CZ\EQ(:H'FHk%J ;58)

We will compare the celerity with the stream at the surface, z = V]
U= Fc Hk (59)
C = CorE ok = co+FcHk (60)

720 and di are of the game type as Q1 and can as well be said to
be included in ?1' But de with R = 2k shows us that the velocity

distribution in the wave motion is slightly affected by the shear

flow.
We now choose & = % and n = 2, We then get for U
_ 2k (z 1))

so that the flow now will vanish faster with the depth. At the sur-

face we get the same value as before in eq. 59

=4 cHk (62)
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The celerity in eq. 34 will be
— 1]~ 1
€ =\ [l Hicf] = o el (63)
Egs. 32 and 33 will be

VZQCZ %)Zk oS K(X-.t) with R=2k (64)
Vsz :—-@2}(—21 COS k(X-/Cf) with R =3k (65)

If we consider a wave with the period T = 10 seconds and the

wave height H = 3 meters we get L = 156 m, o, = 15,6 m/sec, H/L = 2%.

59 and 62 will then be

The stream at the surface chosen in egs.

close to 1 m/sec.

weve ory a shear Streamw)
L wove. without strearv

! &
| 3
’ R
L
! . .
i it 3
“%
! @l %
[ ¢
] 3 wi%
I
; ‘ £
l ‘ te
i 2

h

FLQ-QT Second order deep water wave propagating on a
shear stream.
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PRESSURE

The particle velocities, u and w, are determined by the equa-
tions which were found at the beginning, eqs. 4 and 5, together with
the solutions for 7 of first or second order.

In the second order term of w it is hydrodynamically permissi-
ble to use first order expressions for 7 and its derivatives. The
expression for the pregsure p was left out this time so it will be
congidered here.

Using eq. 7 and the vertical dynamic equation we find to the

second order by integration, with R = k
2 2 2 -
§ oo -2 n-eke-0)
3G g [-e* e 2] (66

As a boundary condition we used p = o at the surface, z = 7.
WIND
* c
[UR——

Pig. 6. During the generation of waves by the wind the pressure on
the surface will not be p = 0. The result will be the
asymmetrical wave,

We could also have used a different value. During the genera-
tion of wavesg by the wind we will not have p = o for z = e The wind
will exert a pressure on the surface by which energy is moved from
the wind to the water. The pressure Will'be negative abovethe crest
(compared to atmospheric pressure) and positive above the trough,
and because of friction the pressure will be bigger on the back than

on the front of the wave crest, If such a pressure distribution on
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the surface is included in the expression for p, the wave equation,
eq. 8 will be changed a little and the result will be an asymmetrical
wave., In view of the solution in eq. 16 we can give the solution as
H )
= B eos(kix-ct) -a 2 - 67)
Q= 5 cos(kix-<ct) ~a§d - Bkn) (67,

where then the parameters o and B are determined by the pressure on

the surface.

I& L > .

X

l
4 _ i
I ]
|
D : |
| [

/LSS OAS S S S

Topn

Fig. 7. At the bottom there is a dynamic boundary condition, which
is as simple as shown above for the progressive wave, For
progressive deep water waves it is special simple.,

The pressure in eq. 66 can be made more simple. In all second
order terms we can use first order expressions, 1if we want. But the
whole expression can be changed. Eq. 66 is a second order expression,
this means that we are allowed to make any third order changes. Such
changes can be made with the only purpose of simplifying expressions,
but they can also be made with a physical purpose. In eq. 66 we wan-
ted the boundary condition p = o at the surface z = n to be fulfilled
exactly. Any third order changes must not change this.

The wave pressure at infinite depth is called pg, so that

o
%x§+z for  Z-»-o0 (68)
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At great depth there is no motion of the water so we will then
find that p; must be constant in horizontal direction. Otherwise the
difference in pressure would create motion, a horizontal velocity Uy, s
(through the equation of momentum). And we cannot have any motion,
because however small Uy, is, Uy will by integration over the infinite
vertical give an infinite discharge, in disagreement with the equa-
tion of continuity in eq. 1. By considering the vertical movement of
the center of mass of the water within two verticals one wave length

apart, and infinite high (it does not move), we find that at infinite

depth we simply have the hydrostatic pressure, so

P =0 (69)

for a progressive wave.
Eq. 69, which is obvious for the engineer, can be used to make
the third order changes of eq. 66. For z -» ~ oo we have ek(Z " ?>m§o

S0
2

Om%@- §+Z N+G 2{[%%%“2(33@2“0%]
1182 s ")

This is used %o find a different expression for the coefficient of

(1 - ek<z - 7>] in eq. 66

= n-z- [ b SN SR 1-e" =)

TG0 TRl 0) i

This is with eqg. 12 reduced to
ﬁ::mZ"%” VZ@’R(ZNVZ)
¢ 2| QY- ek e2rE-)] 2

?

The last term is of second order (and in practice it is even a small

second order term), so we substitute the first order solution of
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12 into this term and get

§ +z =1 ek I L[ ek(=-nl— @2k -] (73)

a surprising simple second order expression, for e.g. the cnoidal

wave. We just assure that we still have p = o at the surface, z = 9.

Egq. 73 could of course also be found in the mathematical way

from eq. 66 using the cnoidal solution of eq. 21 etc., and using

usual mathematical approximations, but it is believed that the

engineer prefers the more physical considerations of this appendix,

FCB. 8.

Comparison of the pressure in the cnoidal wave
with tThe pressure in the 'first order sinusoidal
wave for a progressive deep water wave with

the steepness H/L = 10 %.
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H/2

H/10
05 » P
HIL = 2 < o= ©yH
05" L/20 ]
140/0 \\

3L
4

Fig. 9. Maximum positive and maximum negative wave pressure

below the progressive cnoidal wave for different
steepnesses: H/L = 2%, 6%, 10% and 14%. Note that

the unit 1s different below and above the mean
water level, z = 0.
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ORDER OF MAGNITUDE OF TERMS IN THE WAVE EQUATION

Let us consider the wave equation, eq. 8, where all terms are
included this ftime. The terms are not written in a non-dimensional
form, but this can be obtained by dividing over by R or multiplying
by L. The magnitude of the terms can be found by ingertion of the
solutions egs. 12, 15, 16, 17 or 21. It is then found that e.g. %Q/BX
is proportional to H/L so that 6?/ax is of the same magnitude as H/L
which is written aq/éx is o(%—)a In this way we find for the terms of

eg. 8
Qﬂ and —ER 1 are of i )
ox 3% RZ L
2 3
o 97y 1 a1 o, H 2
pe éxg = and 78X3 5 and Q@XR are o T )
2 3

o1, 3 07 94 22 H 3

( pye ) and be 5X2 and ¢ g;% are of T )
2

9 gg )3R and ?233 f:%R are of % )4

So for the wave steepness, H/L, sufficient small it is correct to
neglect the third and fourth order terms in a second order theory,
and in a first order theory also to neglect the second order terms,
But there are several more terms of second order than of first order
so it can be of interest to see how much is neglected for realisgtic
waves,

Let us consider the z-independent equation

03 on o*n
TS xzfémﬁfgs?axa 305 +GAR
+3n2 R LR =0 %)

For all solutions we have g/c2 = R (eq. 14). Making substitu-
tions like we did just before eq. 19 the two second order terms can

be combined to

dn 0% 32..0% _ ,on 2
~L5F 5k - TN 5 = b5 N R (75)




Comparing this with the first term we get

C 2_ o
RGE+ 630 R™= RGZ(1+61R) (76)
With R = 2n/L we get
- (8 4
6yR = 1273 € 257 (17)
where we used that for deep water waves qwill not exceed o0.65 H, In

a first order theory we would like to neglect 6QR compared to 1, But

for
bR < 1
we must demand
—IE K 0. 04 (78)

and this may not be felt so realistic. In fact, for common waves the
second order terms may be even bigger than the first order term.

The first order theory will though not be as bad as it may
seem from these considerations. This is due to the control we keep
of the resulting expressions. The surface profile is kept between
the crest elevation and the trough elevation. The horizontal velocity
must by integration over a vertical give the discharge. The vertical
velocity must be right at the surface and vanish at infinite depth.
The wave pressure must be zero at the surface and vanish at infinite
depth., The same type of control should be used on the second order
theory. This is done by the cncidal wave profile,

We will then compare with the rest of the terms of eq. 74. We
make the same type of substitutions as before, by which (@Qﬁﬁx)g will
be

ORI (79)

Then eq. 74 will be

kG- ol R-40R] 0w

3

R~ 30" SRR Jyt §2R° =0

Nt

or
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The terms > and (g)ZR2 are combined to give the third order

1
R
celerity of e

RS [1+ 6nR(1=£nR))=0 (81)

In a second order theory we neglect only the last term. So we will

Q2 0

o S50, We then get for the above equation

want

%OQ«T (82)

For the maximum wave steepness, H/L = 0.14 we get

SnR<3H <0k <! )

So the second order theory can in the mathematical sense be a good

approximation,

mﬁf@f"ﬁ"‘ second. order sinusovdal wove

/ﬁ'/%\x ‘Argument' wave, second order

\

. ‘z\ o
/ A ry wove A
v / ‘\% . - /;
o / o St .WW . . ';‘
/ K T A)f,{:f
s / \“’\ M o WMMW“W WM’”WMMW
/ R AN
& ‘\ e 5 ¢
e -\ - /’ . S, .y“l

Fig.40 When the argument wave, eq. 17, is used far beyond its
limit (in practice not possible for deep water, but
posgible in chapter VII), several small ’secondary
crests’ may appear, while the Stokes’ theory only give
one ’secondary crest’ in the middle of the trough.
Hydrodynamically the argument theory is Jjust as good
a second order sinusoidal theory as the Stokes’ theory,
so this shows that there is nothing physical significant
about the Stokes’ second order ’crest in the trough’.
It will therefore be preferred to have a wave theory
that avoids the secondary waves at all, that gives
a more ’smooth profile’, i.e. the cnoidal wave.
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SECOND ORDER SUBSTITUTIONS IN THE CNOIDAL WAVE EQUATION

We will now consider the substitutions just above eq. 19 which
we made to prepare the wave equation for the cnoidal solution. We
will here show, that the teory is mathematical consistent, i.e. we
have not dropped any terms of second order magnitude, but neglect
terms of third and higher orders when needed, We will show that the
substitutions above eq. 19 are correct when neglecting third order

terms, and employing the cnoidal solution, eq. 21, for Qe

Aan
enoi

"y

Fig. 1. The cnoidal wave is during the wave development considered

to be only a magnitude of second order different from
the first order wave.

The second order sinusoidal wave, eq. 15, is

n=n -+ nza (84)

so that n(o(H/L)) is a sum of the first order wave ni (o (H/L)),

eq. 12, and a small second order correction term nZa(o(H/Lf),

The second order cnoidal wave could in the same way be
written

N = MNgnei = N1+t AN (85)

where then An (o (H/L)?) is the small second order difference

between the first order wave n:i (o(H/L)) and the cnoidal wave

Nenoi (o(H/L)). In eq. 84, n; and N,, wWere found separately

and then added to give n. In eq. 85, Napoi Was found direct-

ly without concern for the difference An.
Eg. 85 gives, using eq. 12,
2 2 2 2
2°n - 9°m + 07 An = —k2n, + 3 An
ax? dx? ox? dx?

2
= k (~kn + kAn + JEB An (86)
dx?
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2 .
where kn is o(H/L), and where kAn and %~%§%ﬂ both are o (H/L)?
and
3°n _ 3°nm1 . 3°An :_kz.aam L 8°4n
ox3 ax? ox?® x ax?
: 3
= k2 (-2 4 28n, 1 3 An, (87)
ox ox k? 9x°®
on . 3N 1 9°%An ’
where 5% 1S o(H/L) and where % and 2 53 Are both o (H/L)*.
Egs. 86 and 87 combine to give
-Eﬂ 3°n = Eﬂk(»—kn + kAn + 1 éié~)
9xX ox? ax k dx?
_ ., _93%n 2 3An , 3%An 1 9%An
= T R TR T ) (=t Ant g BXZ)
3
=nd v 0P + o) (88)

So, in a second order theory (as the cnoidal wave of

this paper) the substitution

on 92n _ . 8°n
Tx Sx2z . TR3 (89)

is mathematically consistent. The other substitution made in

eqg. 19 can be considered in the same way.

Fig. 42. Comparison of the discussed second order terms
for the very extreme case of a solitary wave,
H/D = 0.6 (which is highly relevant for chapter IX).
The difference may here seem rather big, but
the alternative of a (traditional) sinusoidal
substitution or neglection is far less attractive.
Tt should also be kept in mind that this sub-
stitution is only made for one out of several
second order terms in the wave equation.
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APPENDIX VII

SECOND ORDER SINUSOIDAL SOLUTION

We will here show more in detail how to find the second order
ginusoidal solution of eq. 15.

The second order wave equation is got by neglecting the third
and fourth order terms in eq. 8. The z-dependent equation, i.e. the

terms that depend on z, will be
a .
M%g;_%gmzwz) W,%Q@R(zwkg)
163858+ )Rt wndpvere-y
on 9* %011 ,2R(z-p) _
- [ SE-ns#[Fe™ 0 =0 (9)

which reduces to
2 3
- R38N FRIF R =0

The last two terms could cause problems, but this will not

happen, neither in higher order theories. The equation could again

be divided in a z-independent equation and a z-dependent equation and
we must dema

"S2 3
320 =o 2)

In eq., 12 we found the first order solution

H
= 5 cos kix-ct) (93)
which can be used for H/L very small. For H/L not so small Y will
deviate slightly from 71 go that we may write

n= #?1“%',&? (94)
where Ay is of second order magnitude, o(H/L)Q, while n and 9,
both are of first order magnitude o(H/L).

Substituting eq. 94 with eq. 93 into eg. 92 we see that only
third and fourth order terms remain, and they can all be neglected

in a second order theory. So eq., 92 did not give any information
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about an in eq. 94, Eq. 92 will be fulfilled for any 4p .
Substituting eq. 94 into eq. 91 we get, when neglecting
higher order terms,

O%(quran) 1 Qﬁ%iml R+ 6 0%n

1.
3x> R
o) 2 .
A+ SR =0 (95)

o3
J‘m AN
N5
Q1, the first order solution, is given in eq. 93. For the first

order part of 9 we know from eq. 12 that R = k = 2n/L. Then eqg. 95
will be, with eq. 93

~olal & 98 p 6 M) L sin kx-et) cos kie) (s6)

3
éﬁéﬁ'%*%@Q = 3(%)%%m 2k (X~ ct) (97)
which has the solution
2
AN ::(»%) “’%‘” cos 2k (X—«ct) (98)

with R = k. We then got Ay = ?Ea from eq. 15,

Instead of considering the z-independent equation we can
consider eq. 8 for the surface z = n, which gives the celerity for
a second order wave, eq. 14,

The solutions egs. 16 and 17, with the second order correct-—
oin in the argument of the cosine function can be determined direct-
ly from eq. 91. They can also be shown to agree with eq. 15 within

second order approximation. Eqs. 17 and 18 give

H H ; k Hy2
=3 cosl k(x - ct) + 5 k sin © 1 + 2(2)
= % cos k(x - ct) cos(gk sin Q)
H | . H . k, H.2
- 5 sin k(x - ct) sin ( 2k sin @) + 2(2) (99)
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Using the Maclaurin series for cos and sin we get
. 2
=4 coc kx-ct) [1-4(Hk sine)+ -]

H H 2
~4snkix-ct) [$k sino+-- ]+ 5(H) (100)
With 8 = k¥ (x - ct) and neglecting terms of third and higher orders
this will be

n =4 cos k x-ct) +(%)Z-§~ oS 2k (x~ct) (101)

which 1s the same as eq. 15,

?’2 = Hen? %ﬁﬁ @@“@@&,} - ;?é

N1 = § coslkx-ct)+ £k sinko-ct)]+aD

11513. Comparison of different second 'order waves for the
deep water wave with the steepness H/L = 10%.
For infinite deep water the difference is not big,.
There is though a small difference between the two
sinusoidal wavesg, and this is due to the influence
of the third and higher order terms not considered
in a second order theory. The second order wave above
that is closest to the cnoidal wave is (incidentally)
also a third order wave.
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STOKES® THEORY

We will here show that the second order ginusoidal theory for
irrotational motion and the Stokes?® second order wave are identical
within second order approximations.

For the Stokes? wave we have

n :.I-zicoskk(x - ct) +%~k‘.H2COS 2k (x - ct)

(102)
_TH kz
u=--ce cos k (x - ct) (103)
w=£§cekzsink(x-ct)' (104)
ET H k=z 1 2 2kz
> ==z e’ " cos k(x - ct) wng e” (105)

Ege 102 is seen to be exactly the same as n+ ?Za in eq. 15.
u is given in eq. 4, but for a correct comparison with the
Stokes’® expression we have to use the expression for an irrotational

wave, so that eq. 29 demands & = 1/2 in eq. 28.
— k(z~ 2 2 y
Upor =0 = 'C?k@* (= VZ)“‘*‘%/C(%’) k*ekE-n (106)
e“kQ is expanded in the Maclaurin series
.,,,.sz — 1_W P 4 Rz 2
€ = VZ 7 VZ R M (107)
Then eq. 106 with eq. 15 will be

22
Upst=0 =.C <Vz1wtwr220w) R @kz ﬁmk?+%ﬁ("§f} k@kzemk? (108)

Neglecting third and higher order terms this will be
2,2 4.
Uroteo™ € Ny kEN= (1= ki) + € 10 ke 24 Sl ek
2
= c T e k=cos kix~ct)— cff] k*ekz cos? k (x-ct)

+ c%(%)&kz@m [cos 2k (x-ct) " 1] (109)

which reduces to eq, 103.
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But by numerical examples there are some difference between
eg. 103 and 106, This shows the importance of the neglected third
order terms even for a deep water wave. ( For H/L = o.l0o we find the
following velocities at the surface of the crest : U C/c = 0,45

9

after Stokes, and u C/c = 0,41 after eq. 106 ).

9
The vertical velocity is given by eq. 5, which can be written

w==cSrerzeh+ cnlkekzehn (110)

With eq. 107 this gives neglecting third and higher order terms
w= - c8R e +c%§k@gkz+cqg§k@kz
x~c%%€kzwc%%&@kz+2fc§%m@@kz (111)

which by eq. 15 is seen to be the same as eq. 104.

For the pressure we use eg. 73

pt_p - kz=~n) Iy Hp k2~ 2k (z-h)
5 =g +Z =nekE P+ Tyllekt-n- 2k (e
which with eq. 107 will be, to the second order

2
%r:: Q1@kz +Q2@€kz ”V?1k?1@kz+%k(% [@kzm@Zkzj(HB)

which by eg. 15 is seen to be the same as eq. 105,

MU

<
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o " b ¢ ¢ ¢ ¢ $
O 2% 6%  10% 14

Fig. 44, The horizontal velocity at the surface of the crest
for two second order irrotational sinusoidal deep
water wavesg, the Stokes’® wave and the second order
sinusoidal wave of this chapter.
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PRACTICAL APPROACH TO THE CNOIDAL SOLUTION

We will in this appendix digcuss how to find a higher order
wave solution like the cnoidal wave.

In the first order theory we found a wave equation, eq. 9,
which simply led directly to the first order wave solution, eq. 12.
By including also the second order terms from eq. 8 it is found natur-
al, with many years of tradition in wave solutions of the perturbation
type, to reach the solution of eq. 15. After still some calculations
the third order perturbation solution is found in eqs. 45, 46, 47,
and 48, Continuing along the gsame line it is possible after rather
much more work to find a fourth order solution or any higher order
gsolution. In this way an apparently very high degree of accuracy can
be obtained. But it is known from Stokes’ second order wave solution
used on more shallow waters that the accuracy does not need to become

better. But for deep water this method is applicable,

2’ order Sinuscidal perturbation wave

|" order wave

SIS S

Fig, 15, The first order wave and the second order sinusoidal per-
turbation wave. (For deep water waves the second order
wave will though never get the shown ’crest in the trough’.)
The second order wave shows qualitatively how the first
order profile should be changed, but a more reasonable
solution than the perturbation solution should be tried.

Still it is not completely satisfactory to have a nth order sgo-
lution that (in the surface profile) ’waves’® or ’winds’ around the
wanted more ’smooth’® solution (the wal regular wave) It would be nicer to
be able to go right from the first order solution to the *smooth’ solu-
tion. For this purpose it is obvious to think of the cnoidal solution,
which has a long succesful tradition in shallow waters.But such a so-

lution doeg not seem straight forward.
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Traditional cnoidal waves are all over tightly connected with the

shallow water criterion. And when considering the Fourier serieg for
the cn or cn2 function it is found not to contain the second harmonic
wave, so 1t may geem very difficult to find a cnoidal wave.

The sinusoidal perturbation solutiong are of big value in de-
scribing the qualitative changes that should be made on the first
order wave. The second order solution of eq. 15 shows that the crest
should be higher and narrower and the trough less deep and wider. The
third order solution shows that the celerity should be bigger, eg. 52,
So wanting to make a better second order solution we need to congider
the surface profile.

We would then like to include such changes in our expression
for the surface elevation that the first order wave profile changes

its shape to give the wanted form of a narrow crest and a wide trough.

argument wave

/ I'order wave
= =

S S S S S

Fig. 16. By including the second order correction in the argument
of the cosine function, the wave profile changes as wanted.
But big changes cannot be made in this way.

To obtain this, we would like the horizontal x-axis to *shrink’® at the
crest and to ’expand’ at the trough. An obvious way to get that, is
by changing the argument as shown in the solutions eq. 16 or 17. Then
the form of the wave will be reasonable if the wave is not too high.
But for high waves on more shallow waters a solution of this
type is insufficient. We only need to consider eqg. 16 for the trough.
A very wide trough will give 99/dx close to o, This means that the
argument in eq. 16 is not changed nearly as much as needed to get the

wanted very wide trough.
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Fig. 47 Let us consider a wave with L/2 = 4 and see
how we can change its shape. is here a normal
cogine function of both x andg .

T
s N, 3 ) §X+o< Sin S~ X

T ) ¥ ¥ S or
o] I \\\\\?K\“““Ngwwuuwmf X §:= ¥ — é;%g ?%%T

Fq.18. W) 1s here a normal cosine function of %, but
3 is now a function of x, which distorts the

surface profile to give the wanted more narrow
crest.

n= H [ cos? T._i f"‘ = Hlen? ""i:k‘{X““?'i‘]

ar — 2K
(N 3 4 { “'[_‘§“‘“OLI’YWLX
L ¢ T ; o
0 1 2 3

& x = F (45
ﬁg.ﬂa Q is still a cosine function of §, but is

an elliptic function of x, which distorts the
surface profile as wanted. The result is the
cnoidal wave.
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cnoidal wave

.,

TS S SIS S/

I'order wave

Fig. 20. If the argument of the cogine function ig changed by an
elliptic function to give the cnoidal wave, the changes
of the surface profile can be made as big as wanted, and
the wave profile will always have a reasonable form,

A better way to change the argument of the cosine function is

to use elliptic functions. The variable §1 is a function of X,

%1 = am x, (114)

where am is the Jacobian amplitude. Then we have

X, =F(§1) (115)

where F is the incomplete elliptic integral of the first kind. I de-
pends also on the parameter m. F can be found tabulated in many hand-

books. We then get the Jacobian elliptic cosine function as

cos %1 = cos ( am Xy ) = cn X, (116)

But cn X, cannot be used becaﬁse it makes the x-axis ’shrink® both at
the crest and at the trough. This problem is overcome simply by using
the square, cn2 Xy We then end up with a solution as eq. 21.

For the cnoidal wave of this thesis it was possible to use the
hydrodynamic conditions to make a mathematical theory which would end
with a differential equation that had the solution of eqg. 21. This
is how wave theories usually are made, alsp the traditional cnoidal
theory., But the author finds it more practical for the engineer to
use observations from the nature and the laboratory and to use the
above considerations to reach the solution directly, and then after-

wards find under what conditions it can be used ( eqs. 25 and 26 Yo
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FORMULAS FOR THE PROGRESSIVE DEEP WATER WAVE

First order formulas are given in chapter II
SECOND ORDER SINUSOIDAL WAVE,

=N+ o= Ycos k(xmt)ﬂ%}% cos 2k(X-ct) (117)

N="4 coslk (x-ct) + Yk sink (x-ct)+7 i (e)

(119)
<~
L=cT w0 L=g=T? - 21
u=chnekz-n (122)
SRL-1+kn]ek=y
2+z= nek@Qy Tyl o kEp){ ek (2
%g; J:Lk sin k (x=ct)- 4 ) k*sinZk(x-ct)  «es)
ot

N ) . % (126)

ROTATTONAL SECOND ORDER WAVES
For waves with rotation of only second order magnitude, only

u will be changed by rotation

U ot = ,@ky? ekz-n) mg»é‘@( ) RZ@MZ ( ) F(Z) (127)

e -G~ ol o L oo



Second order waves with rotation of first order magnitude.

= Ut e, + 202 ci + Naac)
.xﬁﬁkg°~ -
N2ei Qz) Ly cosk(x~ct)
2 .2
Nzai = ’“’(%) Ik L“f;%%:g cos k(x-ct)
s 0, Ry k €D
o2 Byl Wk gk =)
+CS Dpai (Mo + ) eirhk(z-p)
+CHkSSin, erikz-)

“%”/6“5%?4’{ ek E- f@
?2??’%% k3 Sin eikE)

S
+ZR2e evik(z-1)
> ;«ngé @Cméw}k(zw@
k (z -
+ Tyt el @) [1-ekE1)]

Third order sinusoidal wave 1s given in appendix IT.
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(129)
(130)
(131)

(132)

(133)

(134)

(135)



CNOIDAL DEEP WATER WAVE.,

= Hen? B (x=ct) +n,= HenZo + 1,

Ne= itk (1=m- %)

m
mK* =24
b= [ -1
k =41
L =T o L»fg—gﬁ;
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(136)

(137)

(138)

(139)

(140)

(141)

(142)

(143)

o= ﬁ%ﬁ“ \[cro(1-cn2e)({-m+mcne)

H/L 0.02 1 0.04 | 0.06 .08 .10 1 0.12 | 0.14
~nt/H 0.48 | 0.47 | 0.45 [ 0.44 | 0.43 [ 0.41 |0.40
K 1.67 | 1.77 | 1.87 .98 .07 1 2.16 | 2.25

0.22 | 0.39 | 0.52 .62 .70 | 0.75 {0.80

Table for the progressive cnoidal wave.

(145)
(146)
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If rotation wants to be considered for this cnoidal

wave, arbitrary rotation of second order magnitude can be included,

so that only u will be influenced

Uree= € Nk €5= 4 Sl kPek = well Fz) (47

0 =% Qw e kﬁﬁk(Z%?)[éhw%}%w@%a%%@m (148)

To get an irrotational wave it 1s necessarry to use eq. 147
with 6 = 1/2. The arbitrary function F(z) and & must be chosen

gso that the magnitude of the terms in eqg. 148 is of second order.

cn*s

= Na/y
s

0.8

)
&

0.4

0.2

o b t ¢
o 0.1 0.2 0.3 0.4 0.5

Fig. 21. The wave profile for the progressive cnoidal deep
water wave of maximum practical steepness, i.e.
H/L = 14%, and the profile of the sinusoidal wave.
For all other steepnesses the wave profile will be
in between.
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APPENDIX XI

NUMERICAL EXAMPLE FOR THE CNOIDAL THEORY

The practical use of the final formulas given in Ap-
pendix X will be illustrated by a numerical example, and the
results will be compared to those found by the Stokes' theory.

If the wave period and the wave height are
T = 10 sec ; H=15.6m (149)

the wave length, the steepness, and the celerity will be,

using egs. 141 and 139

L = T = 156 m; = = === = 0.10

A gkl

= 15.6 m/sec (150)

The table after eq. 146 gives the crest height and trough
depth

n

i

e (1-0.43)H = 0.57 H = 8.9 m (151)

i

s 0.43 H = 6.7 m (152)
The horizontal velocity below the crest at the mean

water level z = 0 is given by egs. 142 and 140

u = Cnck;e"knc = Cc X 0,36 x 0,70 = 0,.25¢ = 3.9 m/sec (153)

Using eq. 147 with & = 1/2 and F(z) = o we get for an irrotational

wave

u = 3,9 + 0.5 = 4.4 m/sec (154)

rot=o0

so that to get Ut = 4.9 m/sec it is necessary that &6 = 1.0,

i.e. a reasonable wind created rotation,

The pressure below the crest at the mean water level

z = 0o is given by fig. 9. or eq. 144

. knc lT-

-kn —ékn
% =n7n.e + ¢ ¢

H -
. 4Hi-[e e ]

i

0.40 H+ 0.02 H = 0,42H= 6.5 m (155)
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The vertical velocity at the surface, where n = 0, i.e.
for z = 0, may be wanted. Eg. 136 gives
Ny
2__11._____1:: 3
cno = i = 0.43 (156)

The table gives

K =2.07 3 m=0.70 : (157)
Then eqgs. 143 and 145 give

%
w==%%f=c x4 %x2.,07%x0.10%x (0.43(1-0.43)(1-0.70+0.70 x0.,43)7

=0,32c= 5.0 m/sec (158)

This calculation of w also indicates how to calculate
du/dt (when needed in the calculation of e.g. wave forces
on piles).

The Stokesg’® theory was consgidered in appendix VIII.

We will here use egs. 102, 103, 104, and 105, Then we get

Neg = 0.58H = 9.0m. - (159)
u at z = 0 below the crest

u= 0.31c = 4.9 m/sec (160)
wat z =0 and n = 0

w = 0.31c = 4.9 m/sec (161)

+
p below the crest at z = 0, where p = p

% = 0.42H = 6.5 m (162)

There is found a difference in u. But in most cases
the difference between the new cnoidal formulas and the Stokes’
formulas is very small. This is only good, because for deep

water waves the Stokes’ theory is found very reasonable.




Fig. 22.

TROVGH

- U/C

The horigzontal velocity below the crest and the trough
in a progressive deep water wave with the steepness
H/L = 10%. Comparison between the cnoidal theory
and the Stokes’ theory. The shown cnoi profiles are
from eq. 142. This means that the motion is with
a second order ’backward’ rotation. The irrotational
cnoi profiles will for the crest be halfway between
the shown cnoi profile and the Stokes’ profile.
For the trough the irrotational cnoi profile will be
10% smaller than the Stokes’ profile. The Stokes’
profile for the crest coincide with the cnoi profile
with a forward’ rotation of a reasonable value
(6 = 1 in eq. 147). '

In most cases the difference between the Stokes’
wave and the cnoidal wave is small for deep water.
But in the next chapters the wave will propagate to
waters with arbitrary and even shallow depth. Then

142

it will be found important to use the cnoidal description.
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