CHAPTER IIT

HISTORICAL BACKGROUND

INTRODUCTION

After we have studied the first order theory
it can be of interest to consider the classical wave
The basic equations are of course the same, i.e. the
tinuity, the equations of momentum, and the boundary

they are used in a different succession.

WAVE HYDRODYNAMICS

The equation of continuity is
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where u = u(x,z,t) and w = w(x,z,t) are the horizontal and verti-

cal particle velocities.

The horizontal and vertical dynamic equations for a friction-

legs fluid are

op 2u ou ou
- o ?fat*ua + oy,

ow ow

S PR AR A R R

(2)

(3)

p = p(x,z,t) is the water pressure, ? is the unit mass, and ¢y 1is

the unit weight.
Eq. 2 1s differentiated with respect to =z

and eq. 3 is

differentiated with respect to x. 62p/(5xaz) is then eliminated

from the two equations, the terms are rearranged, and eg. 1 is used

to give
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where L. 1s the rotation defined as
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Fig. 1. The rotation of a particle must be constant in time.

Bg. 5 says that the rotation of a particle is constant in a

frictionless fluid. The motion does not need to be irrotational, but
for LL = o +the classical calculations are more simple. We also see,
that if the dynamic equations are fulfilled within a given order of
approximations the rotational condition of eq. 5 ig fulfilled within
the same order of approximations.
So in hydrodynamics eq. 5 is a derived condition that does not need
to be used when egs. 2 and 3 are used in the right way. Eq. 5 can be
ugsed to check a wave theory, and then all the terms of eq. 4 must be
remembered,

For a two-dimensional wave the equation of continuity, eq. 1,

leads to the stream function ¥ so that

U = = %% (7)
W= 5 (8)

For an irrotational wave, &L= o, eq. 6 gives

oty
ﬁ*% =0 (9)

the Laplace equation.
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Eg. 9 is solved to give irrotationl waves. But eq. 9 can also easily
be changed to include rotation by writing
oy d*y

3xz * 53z = T(Y) (10)

where f£(Y¥) is a function of Y/ .,

This is e.g. done by Dubreil -~ Jacotin.

POTENTIAL THEORY
A different and much used wave theory is the potential theory.

For irrotational movement, £L = o in eq. 6, we have a velocity poten-

tial ¢ , so
_ .99
u = - 32 (11)
_ %
W = az (12>
Then the equation of continuity giveg the Laplace equation
2% aﬂg
aXz'+Z=O (13)
Egqs. 2 and 3 give after some calculations the Bernoulli equation
lé;g p, 1 292 902 g
i vl [ (@X) + ( Z) I = C(t) (14)

for a fluid with k= o, C(t) is a constant dependent on the time.

At the surface we have the kinematic surface condition.
woo= 5 u 3 (15)

where W and u, are the vertical and horizontal velocities at the
surface, Q is the surface elevation. This condition will though not
be used exactly at the surface. In the first order theory it will be
used at the mean water level, because k? ig assumed to be negligible.
This approximation is necessary, even though it is near the surface

we have the bigger changes in velocities.
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The dynamic surface condition p = o, can in a first order

theory with eq. 13 be approximated to
109
- - = 16

at the mean water level,

The kinemetic and dynamic surface conditions will after a
few calculations give the first order surface condition, but at the
mean water level

52
g% + ég#? = 0 (17)

assuming f to be periodic this can be written

9 2
5_2“62;) =2 0O (18)

where ¢ is the angular frequency. We then end up with a mathematical

problem as shown in fig. 2,
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Fig. 2. In the classical theories the physical problem with
water is changed to a mathematical problem, (as shown
here in understandable Danish by Lundgren and Jonsson).
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The solution of the potential theory gives us the classical
Airy wave of first order, which is very much in use by engineers. It
is apparently a great relief to introduce ¢ instead of u and w,
whereby the number of variables is reduced. So anyone used to solve
hydrodynamic problems in the mathematical way will find it natural
to use @ and change the physical problem to a mathematical problem,

The method used in chapter II is rather much different. So
maybe it i1s found complicated, and difficult to be sure of. But for
persons without any gpecific hydrodynamic traditions the author feels
that chapter II is just as easy to understand as the potential theory,
and for engineers it may even be easier, because the problems are
'kept in close contact with the water?®.

Within usual first order approximations the results of the
two theories are in agreement, but the engineer is expected to find
the new results better in some respects. Hydrodynamists may Tind it
of interest that the number of assumptions are decreased (no demand
to the rotation and the kinematic surface condition).

To improve the formulas it is possible to continue the theory
to get a second order approximation, the Stokes’® wave of 1880, which
will give a higher and more narrow crest., Higher order waves have
also been given since. They involve long calculations. The results
are given in rather long formulas that are not always so handsome to
use, and the numerical results may be of little value and even mig-
leading in some practical cases.

But higher order theories are of big interest in giving a
qualitative picture of the changes that should be made in the lower
order theories.

With the theory of this thesis it is just as well possible tc¢

continue to higher order theories, as shown in later chapters.
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SHALLOW WATER

The sinusoidal higher order theories are gpecially difficult
to use for shallow waters. This can be a serious problem because
coastal structures are often placed in shallow waters. So waves in
shallow waters have had special attention for more than loo years
and a gpecial shallow water wave theory has been developed. In shal-
low water waves the wave length T is much bigger than the water
depth D, so terms of higher orders in D/L can be neglected. In the
canal wave theory a fundamental equation is the (integrated) equation

of continuity which gives (as in chapter II)

) P
- 3 o
and surface
q =‘j u dz (20)
bottom
g 1is the water discharge through a vertical, the surface elevation,

and u the horigzontal particle velocity. In e.g. the book of Stoker
a page 1s devoted these considerations, but Stoker seems to treat the
shallow water waves (the cnoidal waves) independent of those conside-
rations at other pages.

Lundgren has also worked with the above considerations in the
technical wave theory. The theory might have led to some of the waves
in this thesis if working with integrated quantities was reduced
where possible, and if important boundary conditions were fulfilled
exactly. Although Iundgren’s theory did not have any influence on
the present theory, it is important to have this basis in mind, be-~
cause Lundgren has been the professor for the author. Instead of ask-
ing the author to work along traditional lines using ?’and Y theo-
ries, Lundgren has accepted the more physical considerations of the
wave theories here, also when they were on a more initial state.

The classical cnoidal waves, that are of second order are
found by a potential theory that besides neglecting all usual higher

order terms also neglects terms that are of higher orders in D/I.
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The cnoidal waves were given already in 1895 by Korteweg and
de Vries. But they have been difficult to use because the expressions
for particle velocities and pressure were not so convincing, and be-
cause some of the elliptic functions involved may seem complicated
to use without a computer.

The word ’cnoldal waves’ is usually associated with shallow
walters. But as shown in chapter VI we can as well have cnoidal waves
on infinite deep water, and with advantage.

The wave theories considered above are all approximations of
a certain ’order’, But before those theories Gerstner in 1802 gave
his trochoidal wave, a deep water wave which fulfils the basic hydro-
dynamic conditions exactly. It has though the disadvantage that it
has a rotation of second order in the direction opposite to that nor-

mally created by the wind.

TROUGH CREST Fig. 3.
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STANDING WAVES

The standing wave isnot nearly as common in nature as the pro-
gressive wave. But it is important for the engineer. At a vertical
face breakwater we often see the pure standing wave.

The first order standing wave is most simple found by super-
position of two Airy waves propagating in opposite directions, the
incoming wave and the reflected wave. But it can also be found di-
rectly by the potential wave theory. ILike for the progressive wave
the theory can be extended to higher order theorieg. Higher order
standing sinusoidal waves reveal interesting qualities of the stand-
ing wave, but the results should not be used uncritically.

In connection with the standing waves a special interest con-
cerns the pressure on the vertical wall. The classical expression
for pressure is given by Sainflou in 1928, He worked in the lagrangi-
an system which in some respects may be the preferred system, but
for calculations of the pressure on a wall the engineer prefers the
eulerian system. For practical use the simplified Sainflou formula
can be used as shown in fig. 3. The Sainflou formula is reasonable,

but may though in some cases yield too high pressures.
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In 1944 Miche gave the second order standing wave and

its pressure.

compared to experiments,

In gome cases it gives a pressure that is better,

than that of Sainflou. In other cases,

when the water depth (relative to the wave length) is not so

big, the Miche formula is not so good.

Different theories of higher orders have since been given, e.gs

in 1967 Goda gave the expressions for a fourth order sinusocidal wave.

Goda is concerned with the fact that some higher order theories give

a pressure at the surface that is not numerically equal to o.

Fig.5,
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Pressure in a second order wave using the hydrostatic pres-
sure above the mean water level and the Stokes’ expression
below., The proposal gives a discontinuity at the mean water
level, which is negligible for H/L = o, but which for steeper
waves (e.g. deep water waves) can give a pressure leap of

100 %. .
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This problem has also been studied and partly solved in the
lecture notes of the Technical University of Denmark. There the pres-
sure below mean water level is proposed to be given by the Airy ex-
pression for the first order wave and by a Stokes’ expression for the
gsecond order wave. In both cases the pressure above the mean water
level is proposed to be hydrostatic with the pressure p = o at the
surface and p = v at the mean water level, In fig. 6 this proposal
Tfor the Airy wave is compared to modeltests.

It is understood that when we have trough at the wall this
proposal will not give the pressure p = o at the surface, To pro-
pose a hydrostatic pressure above the mean water level means that the
vertical acceleration is neglected where it is biggest. This is hydro-
dynamically correct in a first order theory but will give too high
pressures, e.g. at the mean water level, specially for the second
order wave.

The vertical acceleration of the water can be so important
that we do not have the maximum pressure at the time of crest even
at rather small depths. This problem has been congidered closer by
e.g. Zagrjadskaja. It is also a result of the theory of second order
of e.g. Miche.

There has been written a lot about waves all over the world
because they are so esgential in coastal hydraulics and in ocean en-
gineering. Only a few papers have been referred above because they
are found of interest in connection with the work of this thesis.
There are a number of books that treats the subject, some in a mathe-
matical way (e.g. ref.[8]) and some including the more practical
aspects (e.g. ref.[23]). The latest proceedings from symposiums on
coastal hydraulics usually have some papers on waves, with a number

of references (e.g. the proceedings refs., [13] and [22] belong %o).
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compared to model tests. Compare with figs, 6 and 7
of chapter V.
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Fig. 7 Second order pressure at the mean water level in progresgive
and standing deep water waves, If, as proposed in the litera-
ture, the hydrostatic pressure is used above the mean water
level in a second order theory the pressure will be bigger
than according to the Airy theory. This is of course a core-
rect first order expression, but not so suitable,
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