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CHAPTER XIT
STANDING CNOIDAL DEEP WATER WAVES

ABSTRACTS

Second order standing waves for infinite deep water are here
described by the ’cnoidal® functions in both space and time.

The involved elliptic functions are more complicated than for the
progressive cnoidal deep water wave, but the expression for the
pressure is rather simple. To make the calculations of pressure

easler a graph is given.

INTRODUCTION

After having developed the progressive cnoidal waves in chap-
ter VI and chapter IX it can be of interest to congider the standing
wave and see 1f 1t is possible to use the cnoidal functions here to
get better results. In this chapter we will confine the congiderati-
ong to infinite deep water. This time we will not start from the be-
ginning, but we will use the results of chapter VII, The notation

and the coordinate system will be the same as used in chapter VI.

SINUSOIDAL SOLUTIONS
We get the pressure from eq. i{ in chapter VII (called eq.y{VII).

For deep water, D/L »®, p will be

B = ﬂ'“’Z'*‘l{["a—*z—D-l—- (gﬂ)z +§.g éﬂ +q azn]['] __eR(Z"n)]

Y 9 3t?2R ot ot Ax Ixot
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The deep water wave equation of second order is got from eq.

13VII by D/L -0
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This equation can give both the progressive and the standing wave

solutions of first and second order,
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The procedure to find the standing solutions is the same as used in
chapter VII, The deep water sinusoidal solutions of first and second

order will be given without deductions.

The first order solution is

n = n: :%coswtcoskx (3)

L_w_ /9

Tk~ 'k (5)

g = g = guw sin wt sin kx (&)
1 2 k

where T 1s the wave period.
The second order solution of the same type as eq.15V
is H
n=Enytn,, =3 cosuﬁ:coskx-+( )2 (1~+cos 2wt) cos 2kx (7))

g = J1 +q2a = %{381nuw181nkx + ()2 sin 2wtsin 2kx (8)

The second order solution of the same type as eq.i17Vlis

n gcose cos 6+ + AD (9)
P

6t==wt-+%]csintﬂzcoskx (10)

0 =kx+%kcoswtsinkx (11)
b

n. = (E) cos 2kx (12)
o) 2 4 -
"% %-51n_6 sin 6, (13)

Egs. 4 and &5 are the same for the second order waves.

The solutions given here can be "tested" in the wave equation,

eq. 2.

STANDING CNOIDAL DEE? WATER WAVES

The standing cnoidal wave is found in almost the same
way as the progressive cnoidal wave. This means that soﬁe of
the second order terms in the wave equation, eq. 2, are
changed with respect to the first order solution, eq. 3.
They are not substituted by the first order solution as is
the case when the sinusoidal second order solutions,egs. 7

and &, are found (compare with eq. 13Vl for the progressive
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wave) . Comparing the progressive solution of eqg. YW with the
corresponding standing solution of eqgs. 9 =13, it is seen
that the expression for the standing cnoidal wave is more
complicated and more difficult to find than the expression
for the progressive cnoidal wave.
Eg. 6 gives
9 32 3%g

9% ax? ox 3

Q
|

(14)

which shows that the last term in eg. 2 can be neglected.
Eq. 3 gives

Mge - g 9°n (15)
3t Ix%3t

from which it is seen that the last term but one in eq. 2
will also disappear together with part of another term. It
is possible in this way to change second order terms whenever
needed, and even to replace g by n. But the problem is the
first order terms that besides n also contain g and are dif-
ferentiated with respect to both x and t. It is, however,
possible to change eq. 2 into two differential equations.

As before, eqg. 2 can be split into a z~dependent and a z-
independent equation, oxr, if preferred, a z-dependent and a
surface equation. From one of the equations, 3g/d%t is iso-
lated and used in the other equation. After some calcula-
tions with rather long equations, it is possible to obtain

the two equations mentioned above (instead of eq. 2)

3
§H+~L~§wﬂd=w3 kn-inm B(E)Zkzsin%ntcoskx sinkx
ax R? 9x® ax 2
+3 (3)2k%coskx sinkx (16 )
3
éﬂ-+—L 2°n = -3k ngﬂ-—B(%)zk(»cos<utsinwt sin?kx (17)
3t gR ot? dt

These two equations which can be written in many ways
must both be fulfilled at the same time. They are here writ-

ten so that they fit in with the final solution.



377

Egs. 416 and 47 can be "tested" in different ways. The
second order solution, eq. 7, is a result of the wave equa-
tion, eq. Z. So as eqgs. 16 and 17 are correct with eq. 7
then egs. 16 and 417 are a correct second order transforma-
tion of eq. 2. (It was possible a "step" before egs. 16 and
77 to get two equations that could lead to both the progres-
sive and standing cnoidal waves),

From the sinusoidal solutions for the progressive
waves it 1is seen that eq.{i7l resembles the cnoidal wave in
eq. 21Vl very much. In the same way, the standing wave of eq.
9 has certain points of resemblance to a cnoidal wave, and
it is thus reasonable to expect a cnoidal solution of the
type 2Ky 1 2K, 1

ny = 2Blen®*——= t - 5llen?*—~=x - 5] (18 )
where Kt and m_ are then functions of x, Kt = Kt(x) and

m, = mt(x), and in the same way K, = KX(t), m_ = mx(t).

Here, it must be remembered that this dependeice on x or t
does not only affect K in the argument but the whole cn-func~
tion.

N from eq. 46 must now be "tested" in egs. 46 and
17. As seen from eq.23Vl, it is not a problem to differentiate
c¢n when the elliptic parameter m is a constant. But in eq.
18 , the parameters depend on x in the first cn and on t in
the last cn.

In the appendix, it is shown how to differentiate cn

with a variable parameter. This is used here to differentiate

eq. 18
an 8 K, H 2K 2K 2K 2K
A L t t t t 2 X __l
T T i Cn t sn T 'tdnmfwdcn 7 X 2}
1 a(mei)
- H cos wt sin’kx (19)
272 dt

The last term is a minor term so the sinusoidal approx-
imation was used
2K
2t 1
2H[cn —Er-t—-§]==ficoswt (20)
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Further differentiation in the same way will give

5%n. 128 K H 2K 2K 2K, 2K
A t  on tt snmwi*tdn-—¥zt(1~2m+3n1cn2—-t)
at?® T3 T T T T
2K, 1 5 (m_K2)
X[CHZWTT'X“ L1+ 3H w?cos wt sin’kx XX
: 272 dt
9% (m. K2)
+3Hwsinowt sin?kx XX
2m? ot?
9% (m_K2)
- Hcoswt sinkx — x X (21)
212 otd

Replacing t by x and T by L gives BnA/Bx and 83nA/8x{
Egs. 418 , 49 and 21 are now substituted into eq. 77, and the
corresponding equations are substituted into eg. 16 . Comparing
eq. 16 for the standing wave with eqg. 20V for the progfessive
wave 1t is seen that they are very much alike. The solution

is found in exactly the same way. It has previously been explain-
ed that it was acceptable to use R = 27/L instead of eq. 26V.

In the same way, gR can be substituted by the second order
sinusoidal value gR = w? = (27/T)2. These approximations can
be shown to be correct in a second order theory.

Corresponding to eq. 25 it will then be found that

2__1_ 3_§ _12 L
tht = 5T Lcosk.x =T H]{COS]Q{V (22)
m K2 = + 73 B cospt = 142 1k cos wt (23)

X X 2 L 4

Na of eq. 18 can, however, not alone completely fulfil
egs. 1 and 17. As in eq. 9 , there will be a permanent stand-
ing wave of

no o= (28 cog oxx | (24)

P 27 4

The final solution is then

"3
(&

nznA-l-np+/_\D . (:

where AD is found by demanding [ ndx = 0.
0
n in eq. 25 could in a second order theory be written
as one cnoidal term as for the progressive wave, eq. 21V, but
then the mathematical simplicity of egs. 22 and 23 would be
lost.
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Fig. 1. The surface profile of the standing cnoiéal wave
at different times. ¢ = 0 is for the maximum crest
at the wall. The profile for t = (7/8)T/2 corre-~
?ggnds to the profile for t = (1/8)T/2, etc. HS/1,=

PRESSURE

The particle velocities, u and w, and the pressure,
p, are determined by the equations which were found at the
beginning in chapter VII tbgether with the solutions for
n for the progressive or the standing wave. The expression
for u is simple, but the expression for p, eqg. 4, contains
several terms. In all the second order terms it is permig-
sible to use the first order expressions for n and g.

Eq. 4 can be written more simply. The wave pressure,
i.e. pressure above hydrostatic pressure from still water,
is called pg for z » -«, so that

Py

- = % + z for z » - ® (26)

For a progressive wave, it can easily be seen that
-+ . + : :
Py = 0. For a standing wave, p, can be found by considering
the vertical oscillations of the centre of mass of a wave

length of water. Then the pressure correct to second order




is found by considering a first order wave

pb

Y = g—H—E—cosZwt
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(27)

Eq. 26 is used in eg. 1 together with eq. V] to get

an

_{..
Py, 1,9%0 1 1
n=-{2n 1.
¥ 9 5¢2 R

J¢ony2
7Ge) T

i3

By this, eqg. 1 can be written as

3
x T 9

Ix

9°n (

PN
L8

ot

Pyg =r1e]R(Z"”)-+~L{(§g)2~ 9? q][e (z=n) _ eZR(Z“n)]
Y 29 939X dx?
i
+ 77[1‘“eR(z~n)] (20)
Using ’ egs. 6 and 27 in the second

order terms, eqg. 2¢ can be written as given in the review of

cnoidal formulas in the appendix.

Eg. 290 can also be found directly from eq. 1 by re-

writing the terms to other second order terms in the same

way as in egs. 14, 15 . Egs. 1 and 29 will by numericdl examples
give small differences in the pressure, but these differences

are of third order magnitude, although such differences can

be felt rather important.
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APPENDIX I

DIFFERENTIATION OF JACOBIAN ELLIPTIC FUNCTION
WITH VARIABLE PARAMETER

The Jacobian elliptic functions are defined as

2K _ . 2K
cn - x = cos (am T %) (30)

where am is called the amplitude.

The Fourier expansion of am is

2K Ke | 27w
am - x = ¢ X + sechwjﬁ—31nmi~x4—..ee,. (31)
where K = K(m) and Kc = K(mc) with m, = 1 ~m.

The first term is seen to be the usual argument of
cos? in a sinusoidal description. So the second term can be
thought of as a small term to give a second order correction,
which is reasonable as long as K, is as large as K, will be
in the possible solutions here. This means that the second
term can be approximated with sinusoidal expressions as it
‘was done earlier with second order terms in the wave equa-
tion. So, in this term m is regarded small. Then K and Ko
can be approximated by the first term of their expansion in
series

m 4 p
Ku»z— H Kcmln_—_ (%

vym

R

Now, sech can be approximated as

K K
sech7r7§ o 2exp(—ﬂj§) o 2exp(~2ih1ia) = % (23)
v/

which is differentiated to give
K

C
9sech T %= 1om _ 1 3(mK?)

3T =g Y et (34)

where eq. 32 was used.,
By means of the usual rules of differentiation of
Jacobian elliptic functions, eqgs. %0, 31 and 34 yield

5 cn? 2K 8am%§

w-ﬂ—£i-==~20n25}{sn25>c————*~
ot iy L ot
oo 2K 2K 9 (mK?) . 27, ar
o — Cn 5= X SN 7~ X —w— sin 5—x (35)

X
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In second order terms, the approximation can be used

2K 2K T .

201’1—]:; xsn—L-XQZCosEx51n%x=sin»2-§x (36)
and now eq. 35 will be

2K
5 cn? £ x

T 2
B e :w-._.l_ Sinz..z_’mx_a.(_m:K.J (/5?)

ot 212 L ot

0 f— T — S 22 T
/T/B TI4 ..
- 01 _—— —z=-%
1 .
- 02 Z="
- 03+
- 0.4 T Surface

Fig. 3. The pressure as a function of time from the standing
cnoidal wave on a vertical wall at different depths
below mean water level. The steepness is the same as
in fig. 2: HS/L'= 10%.




APPENDIX II

REVIEW OF CNOIDAL FORMULAS
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_ (38)
n = nA + np + AD
2K 2K
Ny = 2H[en?*—+=t - %4]lcn®*—=x - %] (39)
thé = %Wg%%COS]Q{ (40)
mei = L3 %COS(ut (41)
2 2T
k = .--LIT— HEN NV T (42)
L. /9 (43)
(c =) T /k
= (Hy2k 4,
%)~(? 7008 2k x (4%)
3 CLUN 3
5%’2 e =-—§% is given by eq. 19 (45)
u = q]cek(zmn) (46)
= ron , . 9ny.k(z-n)
SR L (47)
g-%z = nek(zmn)vk%fygsinzwt[ek(zunx~ezk(z“nh
~%H%cos2wt“ 4ekw“m] (48)
Hg/L 0.02 | 0.04 |0.06 {0.08 [0.10 0.12 |0, 0.20
AD/HS 0.008 0.016]0.023/0.031/0.039|0.047 0.054 0.076
ncm/Hs 0.52| 0.53 {0.55 {0.56 |0.58 [0.59 |0.61 0.65

H is the wave height of the standing wave

Nem is the maximum crest height by the wall.




Fig. 4.

Time t after crest
when maximum pressure

SH 2% | 6% | 10% | 18%

0 0 0 0 | 05
“L/4 | 0 | 05| 07 | 08
~ (/2] 06 | 09| 09 | 10
T3L4] 09 | 1.0 | 10 | 10

: t
Table of T/

Maximum positive and maximum negative wave pressure
at a vertical wall below the standing cnoidal wave

for different steepness Hg/L = 2%, 6%, 10%, and
18%. Note that the unit is different below and a-
bove the mean water level, z = 0. As shown in fig.

%, the maximum positive pressure will not necessari-

ly occur when having a crest, but at the time given
in the table.
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