CHAPTER T 79

PRACTICAL CONSIDERATIONS ON REGULAR WAVES

INTRODUCTION

Regular waves have been known for many years in hydrodynamics,
and many papers have been written on this subject through the years,
But still it is felt that a few things in the wave expressions in
common use are not completely satisfactory.

In this chapter we will make some considerations on regular
wave behaviour from an engineering point of view. We will consider
some of the most used expressions and see how easy they can be chang-

ed to give better results in specific cases.
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Fig. 1. The engineer has primarily an interest in the big waves., So
if it is necessary in the theory to anticipate, that the
waves are infinite small, the results found in this way
should also be reasonable for the big waves.

PRACTICAL CONSIDERATIONS

Let us first of all consider the wave height. An engineer
working with practical problems in coastal hydraulics cannot always
be content with infinitely small waves. When designing coastal struct-
ures, the design wave will be rather high, so that a wave height H,

bigger than half the mean water depth D 1is not at all unrealistical,
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This may seem to make it very difficult to make a wave theory, because
we will have to assume a small wave height in the development of our
theories. But we can get around this problem. When we develope a wave
theory under the assumption of small waves we must try to adjust the
final expressions so that they also yield reasonable results for the
big waves. This can be done arbitrarily within certain limits at the
end, or the whole theory can from the beginning be made with this

purpose in mind.
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Fig., 2. For the engineer it is rather easy to observe the oscillati-
ons of the water surface at the vertical wall. Because of
that, he would like the final expressions for the vertical
velocity and the vertical acceleration to agree with the
expregsion found directly from the oscillation of the surface.
This 1s also of big importance in deciding the wave pres-
sure on the vertical wall.
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Let us as an example consider the vertical particle velocity at the
vertical wall. The Airy theory gives for the surface profile of the

standing wave

sz g coswt cos kx (1)

where e = 2n/T and k = 2n/L with T and L being the wave period
and the wave length. The horizontal coordinate x has got x = o
at the wall,

The Airy expression for the vertical particle velocity is

nH ginh kz .
L A sinat cos kx (2)

where 3z 1s the vertical coordinate with 2z = o at the bottom. The
water close to the wall will then move up and down (without any hori-
zontal velocity). Two particles are of special practical interest,

the particle at the bottom and the particle at the surface. At the
bottom, z = o, eq. 2 gives w = o, as wanted. At the surface gz = D+?,

eq. 2 gives for x = o (the wall)

_ 7H sinh k(D +n) . o
W, o= m T STan sinest (3)

But to find the vertical velocity of the surface particle it would

be just as natural to differentiate eq. 1 and get

_op _ _H . . s
W, = égw_ - 2@951no@t == sineot (4)

comparing egs. 3 and 4 we get

"s1  sinh k(D +9) (5)

W sinh kD ~
a2

For infinite small waves, Q/D ® o, this expression gives the wanted

result ws1/w ® 1, But for more realistic waves eq. 5 may give

s2
WS1/W82> 1.3. If we for the surface particle considered the vertical

acceleration, GZ, in the same way we would find the same result.
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A difference of 30 % in the numerical results from calculating w
and GZ after two different expressions is not always so easy to
accept. And 1t does not need to be accepted. The whole problem can

be solved by changing eq. 2 to

mH sinh kz .
T Sinh k(D +H2) sinest cos kx (6)

which can be written

o sinh kz
W= gg’sinh k(D +-?) ()

This expression is the natural result of the first order sinusoidal
theory of chapter IV, Within first order approximation eqs. 2 and 7
are lidentical. Actually it would be permitted in wave hydrodynamics
simply arbitrarily to change eq. 2 to eq 7, e.g. with the purpose of
fulfilling the surface condition considered above. The difference
between egs. 2 and 7 is that eq. 7 uses the actual water depth D + N
instead of just the mean water depth D as used by eq. 2.

The acceleration of the surface i1s

32
st = gé% (8)

so for the water at the vertical wall it will be reasonable to pro-

pose the vertical acceleration

@ .
o ginh kz (9)

G, = 0t sinh k(D +v2)

This is done after the same considerations that led to eq. 7. This
expression is the same as will be found from the Airy theory (dif-
ferentation of w in eq. 2) within first order approximation. The
reason to use eq. 9 instead of the Alry expresgion is again that it

gives the right result at the surface,
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Fig. 3. The engineer wants spontaneously that the final expression
for the vertical particle velocity gives w = o at the hori-
zontal water tight bottom. This demand is traditionally ful-
filled exactly. In the same way the engineer wants the water
pressure at the surface to be p = o. By numerical use of
traditional formulas this demand is usually not fulfilled
neither for the progressive nor the standing wave.,

Another example of big interest for the practical engineer is the
pressure caused by the waves., If the fluid pressure (pressure in ex-

cegs of the atmospheric pressure) is called p the wave pressure is
+
p o =p - y(D -~ z) (10)

where vy 1s the unit weight. The Airy expression is
p' H cosh kz

Y " 2 cosh kD cos kx cosost (11)

or for both the progressive and the standing wave

+
R_y cosh kz

Y Z cosh kD (12)
This expression is short and simple to use. But it is not without

problems.
If we consider a standing wave with the crest at the wall

the pressure at the mean water level, =z = D will be

L _ Db _
Yy Ty T (13)
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which is the same ag the hydrostatic pressure from the crest above.
This means that the pressure reducing effect from the negative (ver-
tical) acceleration of the water above is neglected. For bigger wa-
ves the vertical acceleration is important, and the highest possible
standing wave can actually be determined by the criterion that the
negative acceleration cannot exceed the acceleration of gravity, g.
If the whole crest had this big acceleration the pressure at the
mean water level would simply be p = 0. So for the engineer that
works with the high design waves, eqg. 13 is not so economical. In-
stead the acceleration of egs. 8 and 9 together with the equation of
momentum will give a better expression

G

P _ zs 1 cosh k(D +A?) - cosh kz
y -2 r Tk sinh k(D + 7))

(14)

( It is shown in detail how to find this expression in chapter Iv,
where 1t also will be shown that eqs. 12 and 14 are identical within
first order approximations).

Eq. 14 solves other problems, too. Eg. 12 cannot be used
above the mean water level, for z>D, This part of the wave is im-
portant, e.g. in determining the overturning moment on a vertical
face breakwater, Eq. 14 can as well be used for =z 3D. At the surface
of the water, 2z = D + N, egs. 12 and 1o will not give ©p = o exact-
ly. This needs then to be when the wave has trough, for ? £ 0.

Eq. 14 is seen to give the wanted p = o at the surface for any VE
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Fig. 4. When observing progressive waves of permanent form it looks
as 1f the shown part of the crest slides on ’frozen’ water.
The trough is considered as a g¢liding negative crest. In this
way the water discharge through a vertical is determined.
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Let us now consider the water discharge g through a verti-
cal for a progressive wave of permanent form. The spontaneous impres-
sion when observing progressive waves is that the waves (the water
of the waves) moves with the velocity ¢, the wave celerity. It seems
as if the crest as a solid body slides on the calm water below, where
the water below the mean water level can be considered as a solid
stationary body. The trough is considered in the same way as a nega-
tive crest sliding on the water below. Such considerations do not re-
present reality with concern to e.g. momentum, but it is an obvious
and very practical way to determine the waterdischarge created by the

wave.

The vertical through the crest will then have a g of

q=c), (15)

where ﬁc is the crest height. The water does of course not only
pass through the upper @&Bwith the big constant velocity c¢. The
water passes through the whole vertical D + QE with the much smaller

variable velocity, u , so that g will be

D +
q =/f (& u dz (16)
[

At any other place the discharge is found in the same way as in

eqg. 15 to
q:CQ (17)
which as in eq. 16 will give

D+
q=c>?=j szudz (18)
o

In this simple and practical manner we have a very basic and natural

equation for the horigontal velocity of a pure wave.



26

B
4/ f /f//f/f?‘}f///fj/fjf@fff é’/d’/vf/sf’fff%/fi f/fe*’ﬁfy/fy/i f’/«f’yf’f g

Fig. 5. When the engineer wants to find the water discharge in a pro-

gressive wave 1t is simple for him to express it as

q=cy

(see eq. 17). But it is just as natural to integrate the

horizontal velocity profile, u.

The two expressions is then wanted to give the same numerical

results, but this is traditionally not the situation.

But eq. 18 1s not fulfilled exactly in the traditional wave theories,

The first order progressive wave is

g cos k(x - ct)

n =
The Airy expression for u is

tH cosh kz

= 0 sinn kp °08 E(x - ct)
cosh kz

© ? k gsinh kD

Thig gives by integration

. - DH?udz:c sinh k(D + 1)
A ? sinh kD

(19)

(20)

(21)

If the engineer for realistic waves compares eq. 21 with eq. 17 he

may again find that eq. 21 with numerical examples yield values

that are more than 30 % too big. In traditional cnoidal wave theories

the difference may be found even much bigger.
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" Fig. 6. In every point of the fluid the equation of continuity must
be fulfilled. But as the engineer seldom needs both velocity
gradients he will not find a spontaneous reason to verify
the equation of continuity. So it can better be accepted
that this equation in the final expressions is fulfilled
only with hydrodynamic approximations, than there are approx-
imations in the boundary conditions.

The next equation we will consider is the equation of conti-

nuity

Sx 9z ° 22)

It is considered a very important equation in hydrodynamics. It is
simple to find. The flow through an infinitesimal box is considered,
The equation is also simple to use. But still it is felt that for
the engineer the exact fulfilment of this equation is not quite as
important as the boundary equations mentioned above. This is because
the engineer will rather seldom find it necessay to use bothéu/Rx
and QOw/®z at the same time. So he will usually in practice not be
faced with numerical deviations in the situation where the equation
of continuity is only fulfilled approximately.

So when 1t is necessary to make approximations in the wave
theory it ig better to make the approximations here than in the
boundary conditions congidered above,

Por the wave theories of this thesis it is though not neceg-
sary in the final formulas to have the equation of continuity ful-

filled only within the given order of approximation.
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Fig. 7. In every point of the fluid the equations of momentum in both
horizontal and vertical direction must be fulfilled. But of
the same reason as for the equation of continuity the fulfil-
ment can be accepted to be only hydrodynamically approximate.

In the equations of momentum it will usually be necesgary to
make approximations of first or second order magnitude, etc. giving
a so-called Tirst order or second order wave.

The horizontal equation of momentum is

d P
¢ = - 52 (23)

and the vertical equation of momentum is

off - - v - 32 (24)

It is felt that usually there will not be spontaneous reason for the
engineer to reach a deviation in numerical results through those two
equations. Otherwise the next chapters will indicate how the final
expression for p should be given to have eq. 24 fulfilled exactly,
But in the theories of this thesis one equation has got to be ful-
filled only approximately. Otherwise we had the ideal exact wave

theory.
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Pig., 8. For a wave with the wave height, H, we can think of a situa-
tion as shown with a given crest level, so that H lower
we have the trough level. The wave profile must then be kept
within these two levels, and further for a regular wave the
engineer wants the profile to drop smooth and gradual from
the crest level to the trough level. For this purpose the
cosine function is good as used in the first order sinusoidal
wave, while the superposition of higher harmonic functions
(the Stokes’ theory) better can be substituted by the new
cnoidal theory of this thesis.

We have now been through some practical considerations of the
basic hydrodynamic conditions in wave theories, the conditions we
will use in the next chapters., A condition of most importance in the
classical wave theories has not been considered here so far : the
rotation condition. The Airy wave theory demands first of all the
motion to be irrotaional. But for the waves of this thesis the rota-
tion does not need to be considered to develope wave theories., The

rotation can be considered at the end.

CONCLUSION

The waves we will develope in this thesis will not be exact.
They cannot fulfil all the hydrodynamic conditions exactly at the
same time. So somewhere there must be approximations, just like there
are approximations in the traditional wave theorieg. But this does

not mean that the same order of approximations should be accepted
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anywhere, As indicated with the considerations above it would be of
practical value to avoid approximations in certain boundary conditions,
at least as long as this can be done without making further approxi-
mations elsewhere. So when we in the following have a second order
wave it means that we have made approximations somewhere of second
order magnitude, but the approximations are never bigger than in a

Stokes?® second order wave.
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